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a b s t r a c t

How can deep neural networks encode information that corresponds to words in human speech into
raw acoustic data? This paper proposes two neural network architectures for modeling unsupervised
lexical learning from raw acoustic inputs: ciwGAN (Categorical InfoWaveGAN) and fiwGAN (Featural
InfoWaveGAN). These combine Deep Convolutional GAN architecture for audio data (WaveGAN;
Donahue et al., 2019) with the information theoretic extension of GAN – InfoGAN (Chen et al., 2016)
– and propose a new latent space structure that can model featural learning simultaneously with a
higher level classification and allows for a very low-dimension vector representation of lexical items.
In addition to the Generator and Discriminator networks, the architectures introduce a network that
learns to retrieve latent codes from generated audio outputs. Lexical learning is thus modeled as
emergent from an architecture that forces a deep neural network to output data such that unique
information is retrievable from its acoustic outputs. The networks trained on lexical items from
the TIMIT corpus learn to encode unique information corresponding to lexical items in the form
of categorical variables in their latent space. By manipulating these variables, the network outputs
specific lexical items. The network occasionally outputs innovative lexical items that violate training
data, but are linguistically interpretable and highly informative for cognitive modeling and neural
network interpretability. Innovative outputs suggest that phonetic and phonological representations
learned by the network can be productively recombined and directly paralleled to productivity in
human speech: a fiwGAN network trained on suit and dark outputs innovative start, even though it
never saw start or even a [st] sequence in the training data. We also argue that setting latent featural
codes to values well beyond training range results in almost categorical generation of prototypical
lexical items and reveals underlying values of each latent code. Probing deep neural networks trained
on well understood dependencies in speech bears implications for latent space interpretability and
understanding how deep neural networks learn meaningful representations, as well as potential for
unsupervised text-to-speech generation in the GAN framework.

© 2021 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

How human language learners encode information in their
peech is among the core questions in linguistics and compu-
ational cognitive science. Acoustic speech data is the primary
ource of linguistic input for hearing infants, and first language
earners must learn to retrieve information from raw acoustic
ata. By the time language acquisition is complete, learners are
ble to not only analyze but also produce speech consisting of
ords (henceforth lexical items) that carry meaning (Kuhl, 2010;
affran et al., 1996, 2007). In other words, speakers learn to
ncode information in their acoustic output, and they do so by
ssociating meaning-bearing units of speech (lexical items) with
nique information. Lexical items in turn consist of units called
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phonemes that represent individual sounds. In fact, speakers not
only produce lexical items that exist in their primary linguis-
tic data, but are also able to generate new lexical items that
consist of novel combinations of phonemes that conform to the
phonotactic rules of their language. This points to one of the core
properties of language: productivity (Baroni, 2020; Hockett, 1959;
Piantadosi & Fedorenko, 2017).

1.1. Prior work

Computational approaches to lexical learning have a long his-
tory. Modeling lexical learning can take many forms (for a com-
prehensive overview, see Räsänen, 2012), but the shift towards
modeling lexical learning from acoustic data, especially from raw
unreduced acoustic data, has occurred relatively recently (Baayen

et al., 2019; Chorowski et al., 2019; Chung et al., 2016; Kamper,
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019; Lee et al., 2015; Levin et al., 2013; Shafaei-Bajestan &
aayen, 2018, i.a.). Previously, the majority of models operated
n either fully abstracted or already simplified features extracted
rom raw acoustic data. A variety of models have been proposed
or this task including, among others, Bayesian and connectionist
pproaches (see, among others Arnold et al., 2017; Baayen et al.,
019; Chuang et al., 2020; Elsner et al., 2013; Feldman et al.,
013, 2009; Goldwater et al., 2009; Heymann et al., 2013; Kamper
t al., 2017; Lee & Glass, 2012; Lee et al., 2015; Räsänen, 2012;
hafaei-Bajestan & Baayen, 2018).
As summarized in Lee et al. (2015), existing models of lexical

earning that take some form of acoustic data as input can be
ivided into ‘‘spoken term discovery’’ models and ‘‘models of
ord segmentation’’ (Lee et al., 2015, 390). Proposals of the first
pproach most commonly involve the clustering of similarities
n acoustic data to establish a set of phonetic units from which
exical items are then established, again based on clustering.
he word segmentation models, on the other hand, ‘‘start from

unsegmented strings of symbols and attempt to identify subse-
quences corresponding to lexical items’’ (Lee et al., 2015, 390; for
evaluation of the models, see also Levin et al., 2013). The models
can take as inputs acoustic data pre-segmented at the word level
(as in the current paper and Chung et al., 2016; Kamper et al.,
2014) or acoustic inputs of unsegmented speech (e.g. in Lee et al.,
2015; Räsänen & Blandón, 2020; Räsänen et al., 2015).

Weakly supervised and unsupervised deep neural network
models operating on acoustic data have recently been used to
model phonetic learning (Alishahi et al., 2017; Chung et al., 2020;
Eloff et al., 2019; Räsänen et al., 2016; Shain & Elsner, 2019), but
not learning of phonological processes. Evidence for phonemic
representation in deep neural networks, for example, emerges
in a weakly supervised model that combines visual and auditory
information (Alishahi et al., 2017). Several prominent autoen-
coder models that are trained to represent data in a lower-
dimensionality space have recently been proposed (Chorowski
et al., 2019; Eloff et al., 2019; Räsänen et al., 2016; Shain & Elsner,
2019). Clustering analyses of the reduced space in these autoen-
coder models suggest that the networks learn approximates to
phonetic features. The disadvantage of the autoencoder archi-
tecture is that outputs reproduce inputs as closely as possible:
the network’s outputs are directly connected to its inputs, which
is not an ideal setting for language acquisition. Furthermore,
current proposals in the autoencoder framework do not model
phonological processes, and there is only an indirect relationship
between phonetic properties and latent space.

A prominent framework for modeling lexical learning is acous-
tic word embedding models that include various (mostly un-
supervised) methods (Kamper et al., 2014; Levin et al., 2013)
including deep neural networks (Baevski et al., 2020; Chung
et al., 2016; Hu et al., 2020; Niekerk et al., 2020). Similar to
the phone-level autoencoder models, the goal of the acoustic
word embedding models is a parsimonious encoding of lexical
items that maps acoustic input into a fixed dimensionality vec-
tor (Chung et al., 2016; Levin et al., 2013). The models can be
used for unsupervised lexical learning and spoken term discovery
in low resource languages (e.g. the Zerospeech challenge; Dunbar
et al., 2019, 2017, 2020). Several models within this framework
employ the autoencoder architecture, where the latent space
reduced in dimensionality can serve as a vector representing
acoustic lexical items (Chung et al., 2016; Kamper, 2019; Niek-
erk et al., 2020). Chung et al. (2016) show that averaged latent
representations can correspond to phonetic representations, but
in order to get these results they additionally perform dimen-
sionality reduction on the latent space. Similarly, Chorowski et al.
(2019) use a vector quantized variational autoencoder (VQ-VAE)
in which the encoder outputs categorical values constituting to-
ken identity. Chorowski et al. (2019) argue that token identities
306
match phoneme identities with relative high frequencies (see
also Chung et al., 2020; Niekerk et al., 2020). Chen and Hain
(2020) argue that a convolutional encoder outputs a higher qual-
ity of audio compared to the RNN architectures that most of the
mentioned proposals use.

One of the major contributions of these models is the facil-
itation of unsupervised automatic speech recognition (ASR) for
zero resource languages, which is why their evaluation focuses on
metrics such as the word discrimination/error tasks (e.g. Baevski
et al., 2020; Chen & Hain, 2020; Chung et al., 2016; Kamper,
2019; Levin et al., 2013; Niekerk et al., 2020) or naturalness of the
outputs (e.g. Chen & Hain, 2020; Eloff et al., 2019; Niekerk et al.,
2020). A subset of proposals explores interpretability of the latent
space and generated outputs (see Chorowski et al., 2019; Chung
et al., 2016), but they focus on the entire latent space rather
than on individual variables or their direct influence on generated
outputs. Moreover, the acoustic word embedding models still
operate with relatively high dimensional vectors (substantially
higher than in the fiwGAN architecture; see Section 3.4) and their
interpretation often includes the entire latent vector or requires
additional dimensionality reduction techniques. To my knowl-
edge, exploration of how individual variables in these vectors
correspond to linguistically meaningful units or how we can elicit
categorical behavior (see Section 3.3.2) is absent.

Finally, while autoencoders are generative and unsupervised,
they crucially differ from GANs in that the encoder does have
direct access to the data. Additionally, autoencoders are trained
on replicating data rather than on learning to generate data from
noise in an unsupervised manner. In other words, autoencoders
are unsupervised in terms of encoding data representations in the
latent space, but the data generation part (decoders) is supervised
in the autoencoder architecture. GANs, on the other hand, are
unsupervised also in the sense of data generation. This distinction
is primarily relevant for the cognitive modeling aspect of the
proposal.

The ideal cognitive model of lexical learning would include
both the production and the perception aspect. Here we focus
on evaluating generated outputs and on the interpretability of
the latent space; we leave the question of how the Q-network
performs on lexical item identification/discrimination for future
work. This brings some limitations in terms of model comparison
— we lack information on how well a GAN-based unsupervised
lexical learner performs on word discrimination tasks compared
to, for example, the autoencoder architecture. It is reasonable to
assume that GAN-based models would perform worse on word
discrimination tasks compared to autoencoders in which both the
encoder and decoder have direct access to the training data. The
Generator and the Q-network in the proposed architecture do not
have a direct access to the training data — the Generator has only
a very indirect access to the data by being trained on maximizing
the error of the Discriminator that aims to estimate Wasserstein
distance between generated and real data. Additionally, the fiw-
GAN and ciwGAN models proposed here have substantially more
reduced latent representations (from 5 to 13 variables total). This
likely negatively affects the word discrimination, and as such, the
evaluation of discrimination is left for future work.

Another advantage of the GAN architecture is that the net-
works generate innovative data rather than replicates of data. We
can thus probe learning by analyzing how GANs innovate, how
they violate data distributions, and what can these innovative
outputs tell us about their learning. Additionally, we focus on ex-
ploring how manipulating the latent space (as proposed in Beguš,
2020a) can elicit generation of unique lexical items at categorical
levels, what effects individual latent variables have on outputs,
and what this manipulation can tell us about lexical learning in

deep convolutional networks.
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.2. GANs and language acquisition

The main characteristics of the GAN architecture (Goodfellow
t al., 2014) are two networks: the Generator and the Discrim-
nator. The Generator generates data from latent space that is
educed in dimensionality (e.g. from a set of uniformly distributed
ariables z). The Discriminator network learns to distinguish be-
ween ‘‘real’’ training data and generated outputs from the Gen-
rator network. The Generator is trained to maximize the Dis-
riminator’s error rate; the Discriminator is trained to minimize
ts own error rate. In the DCGAN proposal (Radford et al., 2015),
he two networks are deep convolutional networks. Recently, the
CGAN proposal was transformed to model audio data in Wave-
AN (Donahue et al., 2019). The main architecture of WaveGAN
s identical to that of DCGAN (Radford et al., 2015), with the main
ifference being that the Generator outputs a one-dimensional
ector corresponding to time series data (raw acoustic output)
nd the Discriminator takes one-dimensional acoustic data as its
nput (as opposed to two-dimensional visual data in DCGAN).
aveGAN also adopts the Wasserstein GAN proposal for a cost

unction in GANs that improves training (Arjovsky et al., 2017).
nstead of estimating the probability of whether the output is
enerated or real, WGAN estimates the Wasserstein distance
etween generated data and real data.
Beguš (2020a) models speech acquisition as a dependency

etween latent space and generated outputs in the GAN archi-
ecture. The paper proposes a technique for identifying latent
ariables that correspond to meaningful phonetic/phonological
eatures in the output. The Generator network learns to encode
honetically and phonologically meaningful representations, such
s the presence of a segment in the output, with a subset of
ariables, i.e. with reduced representation. Using the technique
roposed in Beguš (2020a), we can identify individual variables
hat correspond to, for example, a sound [s] in the output. By
anipulating these identified variables to values that are beyond

he training range, we can force [s] in the output. Interpolating
he values has an almost linear effect on the amplitude of frication
oise of [s] in the output.
One of the advantages of the proposal in Beguš (2020a) is

hat the model learns phonological alternations, i.e. context-
ependent changes in the realization of speech sounds, simulta-
eously with learning acoustic properties of human speech. The
aveGAN model (Donahue et al., 2019) is trained on a simple
honological process: aspiration of stops /p, t, k/ conditioned on
he presence of [s] in the input. English voiceless stops /p, t,
/ are aspirated (produced with a puff of air [ph, th, kh]) word-
nitially before a stressed vowel (e.g. in pit ["phIt]) except if an [s]
recedes the stop (e.g. spit ["spIt]) A computational experiment
uggests that the network learns this distribution, but imperfectly
o. The network learns to output shorter aspiration duration
hen [s] is present, in line with distributions in the training
ata. Outputs, however, also violate data in a manner that can
e directly paralleled to language acquisition. Occasionally, the
enerator network outputs aspiration durations that are longer
n the [s] condition than in any example in the training data: the
enerator outputs [sphIt], which violates the phonological rule in
nglish. In other words, the network violates the distributions
n the training data, and these violations correspond directly to
honological acquisition stages: children acquiring English start
ith significantly longer aspiration durations in the [s]-condition,
.g. [sphIt] (Bond & Wilson, 1980).
In sum, GANs have been shown to represent phonetically or

honologically meaningful information in the latent space that
as approximate equivalent in phonetic/phonological represen-
ations and language acquisition (Beguš, 2020a). The latent vari-
bles can be actively manipulated to generate data with or with-
ut some phonetic/phonological property. These representations,
owever, are exclusively limited to the phonetic/phonological
evel in Beguš (2020a) and contain no lexical information.
 p
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1.3. Goals

Despite several advantages, to our knowledge, lexical learning
has not yet been modeled with Generative Adversarial Neural
network models and perhaps even more generally, with unsu-
pervised generative deep convolutional networks. Donahue et al.
(2019) train the WaveGAN architecture on Speech Commands
Zero Through Nine (SC09) dataset and argues that the network
learns to generate speech-like outputs with high naturalness and
inception scores. Donahue et al. (2019), however, do not explore
internal representations and their architecture does not include
the Q-network (InfoGAN; Chen et al., 2016), which means the
proposal does not model lexical learning or how the network
encodes linguistically meaningful representations. As discussed
in Section 1.1, most other models operate with recurrent neural
networks rather than with convolutional networks and use the
autoencoder architecture.1

In this paper, we follow the proposal in Beguš (2020a) that
phonetic and phonological acquisition can be modeled as a de-
pendency between latent space and generated data in the GAN
architecture and add a lexical learning component to the model.
We modify the WaveGAN architecture and add the InfoGAN’s Q-
network (based partially on implementation in Rodionov, 2018)
to computationally simulate lexical learning from raw acoustic
data. In other words, we introduce a deep convolutional network
that learns to retrieve the Generator’s latent code and propose
a new latent space structure that can model featural learning
(fiwGAN). The fiwGAN architecture additionally allows a very
low dimension categorical vector representation of lexical items
(e.g. n number of features allows 2n number of unique classes).
We train the networks on highly variable training data: manually
sliced lexical items from the TIMIT database (Garofolo et al.,
1993) that includes over 600 speakers from different dialectal
backgrounds in American English. We present four computational
experiments: on five lexical items in the ciwGAN architecture
(Section 3.1), on ten lexical items in the ciwGAN architecture
(Section 3.2), on eight lexical items in the fiwGAN architecture
(Section 3.3), and on the entire TIMIT database (6,229 lexical
items) in the fiwGAN architecture (Section 3.4). Evidence for
lexical learning emerges in all four experiments. The paper also
features a section describing how to directly follow learning
strategies of the Generator network (Section 3.1.2), a section on
featural learning that discusses innovative outputs and produc-
tivity of the model (Section 3.3.1), and a section that proposes a
technique for retrieving near categorical underlying representa-
tion of the latent variables in GANs (Section 3.3.2). We argue that
exploration of innovative outputs and the latent space of deep
neural networks trained on dependencies on speech data that are
well understood (due to extensive study of human phonetics and
phonology in the past decades) provides unique insights both for
cognitive modeling and for neural network interpretability.

Lexical learning is modeled in the following way: a deep
convolutional network learns to retrieve information from inno-
vative outputs generated by a separate Generator network. The
Generator network thus learns to generate data such that unique
lexical information is retrievable from its acoustic outputs. Lexical
learning is not per se incorporated in the model: instead, lexical
learning emerges because the most informative way to generate
outputs given speech data as input is to encode unique informa-
tion into lexical items. The end result of the model is a Generator
network that generates innovative data – raw acoustic outputs
– such that each lexical item is represented by a unique code.
Because the model diverges substantially from existing proposals

1 A deep convolutional autoencoder model architecture based on WaveNet
roposed in Chen and Hain (2020) was released after submission of this paper.
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f lexical learning, we leave direct comparison of its performance
such as on ABX test) for future work. Instead, we propose to
valuate success in the model’s performance in lexical learning
ith an inferential statistical technique — multinomial logistic
egression (Section 3.1).

Representing semantic information can take many forms in
omputational models. In the current proposal, unique lexical
tems are represented with either a one-hot vector in the ciwGAN
rchitecture or a binary code in the fiwGAN architecture. In other
ords, the objective of the model is to associate each unique

exical item in the training data with a unique representation. For
xample, in a corpus with four words, word1 can be associated
ith a representation [1, 0, 0, 0], word2 with [0, 1, 0, 0], word3
ith [0, 0, 1, 0] in the ciwGAN architecture. In the fiwGAN
rchitecture, word1 can be associated with [0, 0], word2 with [0,
], word3 with [1, 0], and word4 with [1, 1].
The model of lexical learning proposed here features some

esirable properties. First, the network is trained exclusively on
aw unannotated acoustic data. Second, lexical learning emerges
rom the requirement on a deep convolutional network to out-
ut informative data. Only because associating a unique code
n the latent space with lexical items is the optimal way to
ncode information such that another network will be able to
etrieve it does the lexical learning emerge. Third, the model
s fully generative: a deep convolutional network (the Genera-
or) generates raw acoustic outputs that correspond to lexical
tems in the training data. Crucially, the Generator network in
he model does not simply replicate training data, but generates
nnovative outputs, because its main task is to increase the error
ate of the network that distinguishes real from generated data
the Discriminator) and its outputs are not directly connected to
he training data. Occasionally, the Generator outputs innovative
ata that violate distributions of the training data, but are lin-
uistically interpretable and highly informative. The model thus
eatures one of the basic properties of language: productivity.
his allows us to compare lexical and phonological acquisition
n language-acquiring children to the innovative generated data
n the proposed computational model. The fiwGAN architecture
as an additional advantage: it can model featural learning in
ddition to a higher level classification. This means that featu-
al representations in phonology and phonetics can be modeled
imultaneously with lexical learning.
To be sure, there are also undesirable aspects of the model. In

articular, the model’s performance is optimal when the number
f lexical classes that the network is predetermined. However, as
he experiment in Section 3.4 suggests, even with the mismatch
etween the number of classes and the number of unique items,
he networks show evidence for lexical learning. Also, while the
odel learns from raw acoustic inputs, the individual lexical

tems in training data are sliced from the corpus (sliced at the
exical level rather on the phone level) instead of inferred by the
odel. These disadvantages are not insurmountable, but are left

o be addressed in future work.
The proposed architectures and results of the computational

xperiments have implications for deep neural network inter-
retability as well as some basic implications for NLP applications.
eside modeling lexical learning, the novel latent space structure
n the fiwGAN architecture can be employed as a general purpose
nsupervised simultaneous feature extractor and classifier for
udio data. We also propose a technique for exploring latent
pace representations: we argue that manipulating latent codes
o marginal values that substantially excess the training range
eveals underlying values for each latent code. Outputs generated
ith the proposed technique feature little variability and have
he potential to reveal learning representations of the Generator
etwork. The proposed model also allows a first step towards
nsupervised text-to-speech synthesis at the lexical level using
ANs: the Generator outputs specific lexical items when latent
odes are set to different values.
 Q
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2. Model

We propose a GAN architecture that combines WaveGAN with
the InfoGAN proposal (Chen et al., 2016). The objective of Genera-
tive Adversarial Networks is a function that maps from randomly-
distributed latent space to outputs that resemble training data
(the Generator network). To find such a function, the Generator
and the Discriminator networks are trained in a minimax game
in which the Discriminator’s (D) loss is maximized and the Gen-
erator’s (G) loss is minimized (Goodfellow et al., 2014). In the
original GAN proposal (Goodfellow et al., 2014), the Discriminator
is trained on classifying real and fake data. In the Wasserstein
GAN proposal that is adopted in this paper (as well as in Don-
ahue et al., 2019) and that substantially improves training, the
Discriminator is trained on minimizing the Wasserstein distance
between the generated and real data distributions (Arjovsky et al.,
2017). The value function can be formalized as (Arjovsky et al.,
2017; Donahue et al., 2019):

VWGAN (D,G) = Ex∼PX [Dw(x)] − Ez∼PZ [Dw(G(z))], (1)

where x is real data from some data distribution (PX ) and z is
latent space from a random distribution (PZ ; in our case the uni-
form distribution). To improve performance, the models are addi-
tionally trained with a gradient penalty term λEx̂∼Px̂
[(∥▽x̂Dw(x̂)∥2−1)2], where Px̂ is a uniform probability distribution
in the interval [0, 1] which is used to sample from the difference
between the real and generated data distributions (x̂) to get the
gradient penalty and λ is a constant set at 10 (for advantages
of such a gradient penalty term over weight clipping, see the
WGAN-GP proposal in Gulrajani et al., 2017).

InfoGAN (Chen et al., 2016) is a proposal within the GAN
framework that aims to increase mutual information between
a subset of latent space – the code variables (c or φ) – and
generated outputs (G(z, c)) (Chen et al., 2016). In this paper, we
adopt the main objectives from the Wasserstein proposal (1) and
add to the model maximization of mutual information between
the code variables in the latent space and the generated outputs
I(c;G(z, c)). Because I(c;G(z, c)) is difficult to estimate, Chen
et al. (2016) instead propose to approximate its variational lower
bound λLI (G,Q ) (with a hyperparameter λ; for details, see Chen
et al., 2016). Our model can thus be formalized as (based on Chen
et al., 2016 and Gulrajani et al., 2017; see also (1)):

min
G,Q

max
D

VIWGAN (D,G,Q ) = VWGAN (D,G) − λLI (G,Q ). (2)

To implement this model, the proposed ciwGAN and fiw-
GAN architectures involve three deep convolutional networks:
the Generator, the Discriminator, and the Q-network (or the lex-
ical learner). The models are based on WaveGAN (Donahue et al.,
2019), an implementation of the DCGAN architecture (Radford
et al., 2015) for audio data and the InfoGAN proposal (Chen et al.,
2016).2 Unlike in most InfoGAN implementations, the Q-network
is a separate deep convolutional network.3

In the GAN architecture, the Generator network usually takes
as its input a number of uniformly distributed latent variables
(z ∼ U(−1, 1)). In the InfoGAN proposal (Chen et al., 2016),
the Generator’s input additionally includes a latent code: a set
of binary variables that constitutes a one-hot vector as well as
uniformly distributed code variables. Because we model lexical
learning, we exclude uniformly distributed code variables. While

2 Barry and Kim (2019) in a recent presentation model piano playing with
nfoWaveGAN. Their proposal, however, focuses on continuous variables and
eature only one categorical latent variable with no apparent function. It is
nclear from the poster what the architecture of their proposal is.
3 The InfoGAN model based on DCGAN in Rodionov (2018) also proposes the
-network to be a separate network.
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he binary variables in InfoGAN implementations usually consti-
ute a one-hot vector, we propose two different architectures. The
iwGAN architecture includes a one-hot vector as its latent code
c); but in the fiwGAN architecture, we introduce binary code
s the categorical input (labeled as φ).4 This new structure in
he fiwGAN latent space allows the network to treat the binary
ariables as features, where each variable corresponds to one
eature (φn). As a consequence, the two networks differ in how
he Q-network is trained. In ciwGAN, the Q-network is trained
n retrieving information from the Generator’s output with a
oftmax function in its final layer. In fiwGAN, the categorical vari-
bles or features are binomially distributed and the Q-network is
rained to retrieve information with a sigmoid function in the fi-
al layer accordingly. In sum, the Generator in our proposal takes
wo sets of variables as its input (latent space): (i) categorical
ariables (c or φ) which constitute a one-hot vector (ciwGAN)
r a binary code (fiwGAN) and (ii) random variables z that are
niformly distributed (z ∼ U(−1, 1)). Fig. 1 illustrates the fiwGAN
rchitecture. The code is available at github.com/gbegus/fiwgan-
iwgan.
The Generator network is a five-layer deep convolutional net-

ork (from WaveGAN; Donahue et al., 2019) that takes the input
ariables (referred to as the latent variables or the latent space)
nd outputs a 1D vector of 16,384 data points that constitute
ust over 1 s of acoustic audio output with 16 kHz sampling rate.
hese generated outputs are fed to the Discriminator network and
he Q-network. The Discriminator network takes raw audio as its
nput: both generated data and real data sliced at the lexical level
rom the TIMIT database (Garofolo et al., 1993). It is trained on
stimating the Wasserstein distance between generated and real
ata distributions, according to Arjovsky et al. (2017). It outputs
‘realness’’ scores which estimate how far from the real data dis-
ribution an input is (Brownlee, 2019). The Generator’s objective
s to increase the error rate of the Discriminator such that the
iscriminator assigns a high ‘‘realness’’ score to its generated
utputs.
To model lexical learning, we add the Q-network to the archi-

ecture (InfoGAN; Chen et al., 2016). As already mentioned, the
-network is independent of the Discriminator network in the
roposed architecture. A separate Q-network is in fact desirable
s it enables exploration and probing of internal representations
hat are limited to lexical learning and are dissociated from the
unction of the Discriminator. In future work, we can thus test
he Q-network on discriminative tasks (such as ABX) and probe
ts representations that are limited to lexical learning and are not
nfluenced by the Discriminator’s function (of estimating realness
cores). The Q-network is in its architecture identical to the
iscriminator. It takes only generated outputs (G(z)) as its input
n the form of 16,384 data points (approximately 1 s of audio
ata sampled at 16 kHz). The Q-network has 5 convolutional
ayers. The only difference between the Discriminator and the
-network is that the final layer in the Q-network includes n
umber of nodes, where n corresponds to the number of cate-
orical variables (c in ciwGAN) or features (φ in fiwGAN) in the
atent space.

The Q-network is trained on estimating the categorical part
f the latent space (c- or φ-values). Its output is thus a unique
ode that approximates the latent code in the Generator’s latent
pace — either a one-hot vector or a binary code. The training
bjective of the Q-network is to approximate the unique latent
ode in the Generator’s hidden input. The loss function of the
-network is to minimize the difference between the estimated
- or φ-values that correspond to the nodes in the last fully

4 For a different kind of binarization that applies to the entire latent space
n the variational autoencoder architecture, see Eloff et al. (2019).
 h
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connected layer and the actual c- or φ-values in the latent space
of the Generator. At each evaluation, weights of the Q-network
as well as the Generator network are updated with cross-entropy
according to the loss function of the Q-network. This forces the
Generator to generate data, such that the latent code or latent
features (c or φ) will be retrievable: the Generator’s objective is
to maximize the success rate of the Q-network. The Generator
is additionally trained on maximizing the error rate of the Dis-
criminator. The training proceeds as follows: the Discriminator
network is updated five times, followed by an update of the
Generator based on the Discriminator’s loss and an update of
the Generator together with the Q-network to minimize the Q-
network’s loss. The Generator and the Discriminator networks
are trained with the Adam optimizer, whereas the Q-network is
trained with the RMSProp algorithm (with the learning rate set
at .0001 for all optimizers). The minibatch size is 64.

To summarize the architecture, the Discriminator network
learns to distinguish ‘‘realness’’ of generated speech samples.
The Generator is trained to maximize the loss function of the
Discriminator. The Q-network (or the lexical learner network) is
trained on retrieving the categorical part of the latent code in
the Generator’s output based on only the Generator’s acoustic
outputs. Because the weights of the Q-network as well as the
Generator are updated based on the Q-network’s loss function,
the Generator learns to associate lexical items with a unique
latent code (one-hot vector or binary code), so that the Q-network
can retrieve the code from the acoustic signal only. This learning
that resembles lexical learning is unsupervised: the association
between the code in the latent space and individual lexical items
arises from training and is not pre-determined. In principle, the
Generator could associate any acoustic property with the latent
code, but it would make it harder for the Q-network to retrieve
the information if the Generator encoded some other distribution
with its latent code. The association between a unique code
value and individual lexical item that the Generator outputs thus
emerges from the training.

The result of the training in the architecture outlined in Fig. 1
is a Generator network that outputs raw acoustic data that resem-
ble real data from the TIMIT database, such that the Discriminator
becomes unsuccessful in assigning ‘‘realness’’ scores (Brownlee,
2019). Crucially, the Generator’s outputs are never a full repli-
cation of the input: the Generator outputs innovative data that
resemble input data, but also violate many of the distributions in
a linguistically interpretable manner (Beguš, 2020a). In addition
to outputting innovative data that resemble speech in the input,
the Generator also learns to associate each lexical item with a
unique code in its latent space. This means that by setting the
code to a certain value, the network should output a particular
lexical item to the exclusion of other lexical items.

There are two supervised aspects of the model. First, the
network is trained on manually sliced lexical items and does not
perform slicing from a continuous speech stream in an unsuper-
vised manner. Addressing this disadvantage is left for future work
(see the work on this topic in Lee et al., 2015; Räsänen & Blandón,
2020; Räsänen et al., 2015). Second, the model performs best
when the number of lexical items in the training data matches
the number of classes predetermined in the model. For example,
a one-hot vector in the ciwGAN architecture with 5 variables is
used to categorize 5 lexical items. We feed the network with 5
different lexical items from the TIMIT database. In the fiwGAN
architecture, n features (φ) are used to categorize 2n classes. For
xample, 3 features φ allow 23

= 8 classes and we feed the
etwork 8 different lexical items. However, as is suggested by
he experiment in Section 3.4, the Generator learns to associate
ingle lexical items with a given latent code even if there is a

igh mismatch between the number of classes and the number

https://github.com/gbegus/fiwgan-ciwgan
https://github.com/gbegus/fiwgan-ciwgan
https://github.com/gbegus/fiwgan-ciwgan


G. Beguš Neural Networks 139 (2021) 305–325

o
d
f

T
F
c
o

5

Fig. 1. Architecture of fiwGAN: green trapezoids represent deep convolutional neural networks; purple squares illustrate inputs to each of the three networks. The
Generator network takes 3 latent features φ (constituting binary code) and 97 latent variables z uniformly distributed (z ∼ U(−1, 1)) as its input. The Generator
utputs a vector of 16,384 values (x̂) that constitute approximately 1 s of audio file (sampled at 16,000 Hz). The Discriminator takes generated data (x̂) and real
ata and estimates the Wasserstein distance between them. The Q-network (lexical learner) takes generated data as its input and outputs estimates of the unique
eature values that the Generator uses for generation of each data point.
able 1
ive lexical items used for training in the five-word ciwGAN model with their
orresponding IPA transcription (based on general American English) and counts
f data points for each item.
Word IPA Data points

oily ["OIli] 638
rag ["ôæg] 638
suit ["sut] 630
water ["wORÄ] 649
year ["jIô] 650

Total 3205

of lexical items. In other words, that the number of classes and
actual lexical items match is not a hard requirement and evidence
for lexical learning emerges even if the number of possible classes
is substantially higher than the number of actual items. One
disadvantage in such a case is that occasionally high frequency
words can be associated with multiple codes (see discussion in
Section 3.4).

3. Experiments

3.1. ciwGAN on 5 lexical items

3.1.1. 8011 steps
The first model is trained on the ciwGAN architecture with
lexical items from TIMIT: oily, rag, suit, water, and year. The

latent space of this network includes 5 categorical variables (c)
constituting a five-level one-hot vector and 95 random variables
z. The five lexical items were chosen based on frequency: they
are chosen from the most frequent content words with at least
600 data points in TIMIT. A total of 3205 data points were used
in training and each of the five items has > 600 data points in
the training data. The input data are 16-bit .wav slices of lexical
items (as annotated in TIMIT) sampled with 16 kHz rate. Input
lexical items with counts are given in Table 1.

To test whether the Generator network learns to associate
each lexical item with a unique code, the ciwGAN architecture
310
is trained after 8011 (∼ 800 epochs) and 19,244 steps (∼ 1921
epochs) and 100 outputs are generated for each one-hot vec-
tor. Beguš (2020a) shows that manipulating the latent space of
the Generator network to values outside of the training interval
can reveal the underlying feature encoded with each variable.
Additionally, (Beguš, 2020a) argues that the relationship between
the latent variables and meaningful phonetic properties can be
almost linear. Based on these findings, the code variables (c)
in the generated samples are manipulated not to 1 (as in the
training stage), but rather to 2 when generating outputs. The rest
of the latent space (all z-variables) are sampled randomly, but
kept constant across the five categorical variables.

One hundred outputs are thus generated for each unique code
(e.g. [2, 0, 0, 0, 0], [0, 2, 0, 0, 0] ...).5 We analyze outcomes at
two points during the training: after 8011 steps (∼ 800 epochs)
and after 19,244 steps (∼ 1921 epochs). Since we are modeling
language acquisition, we are not interested in full convergence
of the model: it is more informative to probe the network as
it is being trained. The number of steps at which we probe the
networks is somewhat arbitrary, but the main consideration in
choosing the number of steps is a balance between interpretabil-
ity of outputs and minimizing the number of epochs (for a more
detailed discussion, see Beguš, 2020a). The outputs were analyzed
by a phonetically trained female speaker of American English who
is not a co-author in this research and was not aware of the exact
details of the experiment. The results below are reported based
on the transcriber’s analysis as well as based on an acoustic analy-
sis by the author. Altogether, 1000 outputs are thus analyzed and
transcribed.

Results of the analysis suggest that the network associates
each unique code with a different lexical item. The success rate,
however, differs across lexical items. For example, when the
latent code is set at [0, 0, 0, 0, 2] the Generator trained after
8011 steps outputs samples that are transcribed as rag in 98/100
cases. In other words, the Generator learns to associate [0, 0, 0,

5 All acoustic analyses are performed in Praat (Boersma & Weenink, 2015).
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, 2] with rag.6 The Generator thus not only learns to generate
speech-like outputs, it also represents distinct lexical items with
a unique representation: information that can be retrieved from
its outputs by the lexical learning network. We can argue that [0,
0, 0, 0, 2] is the underlying representation of rag.7

To determine the underlying code for each lexical item, we
se success rates (or estimates from the multinomial logistic
egression model in Table 2 and Fig. 4): the lexical item that is
he most frequent output for a given latent code is assumed to
e associated with that latent code (e.g. rag with [0, 0, 0, 0, 2]).
ccasionally, a single lexical item is the most frequent output for
wo latent codes. As will be shown below, it is likely the case that
his reflects imperfect learning where the underlying lexical item
or a latent code is obscured by a more frequent output (perhaps
he one that is easier to distinguish from the data). In this case, we
ssociate such codes to the lexical item for which the given code
utputs the highest proportion of that lexical item with respect to
ther latent codes. For example, [0, 0, 0, 2, 0] outputs water most
requently with oily accounting for approximately a quarter of
utputs. The assumed lexical item for [0, 0, 0, 2, 0] is oily, because
he code that outputs water most frequently is [0, 0, 2, 0, 0], while
ighest proportion of oily relative to other latent codes is for [0,
, 0, 2, 0]. Observing the progress of lexical learning provides
dditional evidence that oily is the underlying representation of
0, 0, 0, 2, 0]: as the training progresses the network increases
ccuracy (see Section 3.1.2).
The success rate for the other four lexical items is lower than

or rag, but the outputs that deviate from the expected values are
ighly informative. For c = [2, 0, 0, 0, 0], the Generator (8011
teps) outputs 72/100 data points that can be reliably transcribed
s suit. In seven additional cases, the network outputs data points
hat can be transcribed with a sibilant [s] (79 total). In these
utputs, [s] is followed by a sequence that either cannot reliably
e transcribed as suit or does not correspond to suit, but rather
o year (transcribed as sear [sIô]). The remaining 21 outputs do
ot include the word for suit or a sibilant [s]. However, they are
ot randomly distributed across other four lexical items either —
hey include lexical item year or its close approximation.8

An acoustic analysis of the training data reveals motivations
or the innovative deviating outputs. As already mentioned, the
etwork occasionally generates an innovative output, sear. The
ources of this innovation are likely four cases in the training data
n which [j] in year ([jIô]) is realized as a post-alveolar fricative [S],
robably due to contextual influence (something that could be
ranscribed as shear [SIô]). Fig. 2 illustrates all four examples. The
nnovative generated output sear differs from the four examples
n the training data in one crucial aspect: the frication noise in
he generated output is that of a post-alveolar [s] rather than that
f a palato-alveolar [S]. Spectral analysis in Fig. 2 clearly shows
hat the center of gravity in the generated output is substantially
igher than in the training data (which is characteristic of the
lveolar fricative [s]).
The innovative sear output likely results from the fact that

he training data contains four data points that pose a learning
roblem: shear that features elements of suit and year. The in-
ovative generated sear [sIô] consequently features (i) frication

noise that is approximately consistent with suit [sut] and (ii)
ormant structure consistent with year [jIô]. It appears that the
network treats sear as a combination of the two lexical items.
The network generates innovative outputs that combines the two

6 Occasionally, a short vocalic element precedes the ["ôæg].
7 In the remaining two cases, the outputs include [ô] in the initial position,
hich is followed by a diphthong [aI] and a period of a consonantal closure.
ne output was transcribed as right.
8 For raw counts in this and other models, see Tables A.5, A.6, A.7, and A.8.
311
elements (sear [sIô]). Additionally, the sear output seems to be
qually distributed among the two latent codes, [2, 0, 0, 0, 0]
epresenting suit and [0, 2, 0, 0, 0] representing year. In other
words, the error rate distribution of the two latent codes suggests
that the network classifies the output sear as the combination of
elements consistent with [2, 0, 0, 0, 0] and [0, 2, 0, 0, 0].

For c = [0, 2, 0, 0, 0], the Generator outputs 68 data points
that can be reliably transcribed as year or at least have a clear
[Iô] sequence (without an [s]).9 22 outputs feature a sibilant [s].
In these 22 cases, 16 can reliably be transcribed as suit, while the
others are mostly variants of the innovative sear. The remaining
cases (approximately 10) are difficult to categorize based on
acoustic analysis.

For [0, 0, 2, 0, 0], the Generator outputs 84 data points that
are transcribed as containing water [wORÄ]. In approximately 15
of the 84 cases, the output involves an innovative combination
transcribed as watery ["wOR@ôi]. Fig. 3 illustrates one such case.
Watery is an innovative output that combines segment [i] from
oily (["OIli]) with ["wOR@ô] from water into a linguistically inter-
pretable innovation. This suggests that the Generator outputs a
novel combination of segments, based on analogy to oily. Unlike
for sear, the training data contained no direct motivations based
on which watery could be formed.10

Finally, for [0, 0, 0, 2, 0], the Generator outputs only 26 outputs
that can reliably be transcribed as oily ["OIli]. On the other hand,
61 outputs contain water. Oily is the less frequent output for [0,
0, 0, 2, 0] compared to water, but water is assigned to [0, 0, 2, 0,
0] because it is its most frequent output, while [0, 0, 0, 2, 0] is the
code that outputs the highest proportion of oily. This is why we
analyze oily as the underlying lexical item for the [0, 0, 0, 2, 0]
code. Another evidence that oily might underly the [0, 0, 0, 2, 0]
code is that as the training progresses, the Generator increases
the number of outputs transcribed with oily for this code and
decreases the number of outputs water for the same code (see
Section 3.1.2 and Fig. 4). For a confirmation that the proposed
method for assigning underlying assumed words for a given code
based on annotated outputs yields valid results, see Section 3.3.2.

To evaluate lexical learning in the ciwGAN model statistically,
we analyze the results with a multinomial logistic regression
model. To test significance of the latent code as the predictor of
the lexical item, annotations of the generated data were coded
and fit to a multinomial logistic regression model using the nnet
package (Venables & Ripley, 2002) in R Core Team (2018). The
dependent variable is the transcriptions of the generated outputs
for the five lexical items and the else condition.11 The inde-
pendent variable is a single predictor: the latent code with the
five levels that correspond to the five unique one-hot values in
the latent code. The difference in AIC between the model with
the latent code as a predictor (AIC = 674.7) vs. the empty
model (AIC = 1707.1) suggests that the latent code is indeed a
ignificant predictor of the lexical item in the output. Counts are
iven in Table 2. Estimates from the multinomial logistic model
n Fig. 4 clearly show that each lexical item is associated with a
nique latent code.

9 The initial consonant is sometimes absent from transcriptions, but this is
rimarily because the glide interval is acoustically not prominent, especially
efore [I].
10 In 10 further cases of [0, 0, 2, 0, 0], the Generator outputs data points that
contain a sequence oil ["OIl]. Transcription of the remaining 6 outputs is uncertain.
11 The following conditions were used for coding the transcribed output: if the
annotator transcribed an output as containing ‘‘suit’’, the coded lexical item was
suit), if ‘‘ear’’ or ‘‘eer’’ (and no ‘‘s’’ immediately preceding), then year, if involving
‘‘water’’, ‘‘oil’’, and ‘‘rag’’, then water, oily, rag, respectively. In all other cases,
the output was coded as else.
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Fig. 2. Waveforms (top), spectrograms (mid, from 0–8000 Hz), and 25 ms spectra (slices indicated in the spectrograms) (bottom) of four data points of the lexical
item year with clear frication noise in the training data (from TIMIT) and the generated innovative output sear.
Fig. 3. A waveform and spectrogram (0–4000 Hz) of an innovative output watery ["wOR@ôi] (top right). That innovative watery is a combination of water ["wORÄ] and
oily ["OIli] is illustrated by two examples from the training data (top and bottom right). The innovative output watery features a clear formant structure of water with
a high front vowel [i], characteristic of the lexical item oily (see marked areas of the spectrograms). At 19,244 steps, the vocalic structure of [i] is not present in the
output, given the exact same latent code and random latent space. The network thus corrects the formant structure from an innovative watery into water ["wOR@ô(@)]
as the training progresses. In some other cases, the network at 19,244 steps outputs oily for what was watery at 8011 steps.
Table 2
Generated outputs and their percentages across the five one-hot vectors in the latent code. Transcriptions of the
outputs were coded as detailed in footnote 11.
Assumed word Latent code c Most frequent % 2nd most freq. % Else

suit [2, 0, 0, 0, 0] suit ["sut] 72% year ["jIô] 21% 7%
year [0, 2, 0, 0, 0] year ["jIô] 70% suit ["sut] 12% 18%
water [0, 0, 2, 0, 0] water ["wORÄ] 84% oily ["OIli] 10% 6%
oily [0, 0, 0, 2, 0] water ["wORÄ] 61% oily ["OIli] 26% 13%
rag [0, 0, 0, 0, 2] rag ["ôæg] 98% – – 2%
312
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Fig. 4. Estimates of two multinomial logistic regression models (for 5-word
odels trained after 8011 and 19,244 steps) with coded transcribed outputs
s the dependent variable and the latent code with five levels that correspond
o the five unique one-hot vectors in the model.

.1.2. 19,244 steps
The proposed model of lexical learning allows not only for

he ability to test learning of lexical items, but also to probe
earning representations as training progresses. We propose that
he progress of lexical learning can be directly observed by keep-
ng the random variables constant across training steps. In other
ords, we train the Generator at various training steps and gen-
rate outputs for models trained after different number of steps
ith the same latent code (c) and the same latent variables (z).

This reveals how encoding of lexical items with unique latent
codes changes with training.

To probe lexical learning as training progresses, we train the
5-word model at 8011 steps for an additional 11,233 steps (total
19,244) and generate outputs. The generation is performed as
described in Section 3.1.1: for each unique latent code (one-hot
vector), we generate 100 outputs with latent variables identical
to the ones used on the model trained after 8011 steps. The latent
code is again manipulated to value 2 (e.g. [2, 0, 0, 0, 0]) in order
to probe the underlying effects of the latent code on generated
outputs.

The latent code remains a significant predictor in a multino-
mial logistic regression model (AIC = 759.9 for a model with the
predictor and 1760.2 for an empty model). In fact, success rates
remain almost identical across the training steps as is clear from
regression estimates in Fig. 4 with one notable exception. The
most substantial improvement in success rate is observed for oily:
313
+11% in raw counts. The overall success rate is lowest in the 8011-
step model precisely for lexical item oily. In fact, the success rate
for [0, 0, 0, 2, 0] with assumed lexical representation oily is only
26%. At 19,244 steps, the success rate (given the exact same latent
variables) increases to 37%.12

Generating data with identical latent variables allows us to
observe how the network transforms an output that violates the
underlying lexical representation to an output that conforms to
it. Fig. 5 illustrates how an output water at 8011 steps for latent
code [0, 0, 0, 2, 0] changes to oily at 19,244 steps.13 Both outputs
have the same latent code and latent variables (z). Spectrograms
in Fig. 5 clearly show how the formant structure of water and its
characteristic period of reduced amplitude for a flap [R] change
to a formant structure characteristic for oily with a consonantal
period that corresponds to [l]. The figure also features spectro-
grams of two training data points, water and oily, which illustrate
a degree of acoustic similarity between the two lexical items.
Similarly, Fig. 3 illustrates how an output watery that violates
the training data in a linguistically interpretable manner at 8011
steps changes to water consistent with the training data.

In sum, the results of the first model suggest that the Gen-
erator in the ciwGAN architecture trained on 5 lexical items
learns to generate innovative data such that each unique latent
code corresponds to a lexical item. In other words, the network
encodes unique lexical information in its acoustic outputs based
solely on its training objective: to generate data such that unique
code is retrievable from its outputs. Fig. 4 illustrates that each
lexical item is associated with a unique code. Modeling of lexical
learning is thus fully generative: when the latent code is ma-
nipulated outside of the training range to value 2, the network
mostly outputs one lexical item per unique code with success
rates from approximately 98% to 26%. The errors are not randomly
distributed: the pattern of errors as well as innovative outputs
suggests that (i) suit and year and (ii) water and oily are the items
that the Generator associates more closely together. Output errors
fall almost exclusively within these groups. The Generator also
outputs innovative data that violate training data distributions.
Acoustic analysis of the training data reveals motivations for the
innovative outputs. When we follow learning across different
training steps, we observe the Generator’s repair of innovative
outputs or outputs that deviate from the expected values. The
highest improvement is observed in the lexical item with overall
highest error rate.

3.2. ciwGAN on 10 lexical items

To evaluate how the Generator performs on a higher number
of lexical classes, another model was trained on 10 content lexical
items from the TIMIT database, each of which is attested at least
600 times in the database. All 10 lexical items with exact counts
and IPA transcriptions are listed in Table 3.

To evaluate lexical learning in a generative fashion, we use
the same technique as on the 5-item Generator in Section 3.1.
The Generator is trained for 27,103 steps (∼ 1346 epochs). The
number of epochs is thus approximately at the halfway point
between the models in Sections 3.1.1 (8011) and 3.1.2 (19,244).
We generate 100 outputs for each unique one-hot vector with the
value set outside of the training range to 2 (e.g. [2, 0, 0, 0, 0, 0, 0,
0, 0, 0]), while keeping the uniform latent variables (z) constant
across the 10 groups. 1000 outputs were thus annotated.

Similarly to the 5-word model in Section 3.1.1, the generated
data suggests that the Generator learns to associate each lexical
item with a unique representation. To test the significance of

12 The model does not seem to improve further after 46,002 steps.
13 Occasionally, a change in the opposite direction is also present.
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Fig. 5. Waveforms and spectrograms (0–4000 Hz) of a generated output at 8011 steps (trained on five lexical items) for latent code [0, 0, 0, 2, 0] that can be
transcribed as water (top left); and of a generated output for the exact same latent code as well as other 95 latent variables, but generated by a model trained after
19,244 steps (top right) transcribed as oily. Circled areas point to three major changes on the spectrogram that occur from the output at 8011 steps to the output
at 19,244 steps: vocalic formants change from [wO] to [oI] (area 1), periods characteristic of a flap [R] change to [l] (area 2) and formant structure for [Ä] turns into
n [i] (area 3). Examples for water and oily from the TIMIT database (bottom left and right) illustrate close similarity of the generated outputs to the training data.
hile the opposite change (from oily to water) also occurs, it appears less common.
able 3
en content lexical items from the TIMIT database used for training in the
iwGAN model (Section 3.2) with their corresponding IPA transcription (based
n general American English) and counts of data points for each item.
Word IPA Data points

ask ["æsk] 633
carry ["khæôi] 632
dark ["dAôk] 644
greasy ["gôisi] 630
like ["laIk] 697
oily ["OIli] 638
rag ["ôæg] 638
suit ["sut] 630
water ["wORÄ] 649
year ["jIô] 650

Total 6441

the latent code as a predictor, the coded annotated data were
fit to a multinomial logistic regression model (as described in
Section 3.1).14 The AIC test suggests that the latent code is a

14 The outputs were coded according to the following criteria: if transcription
ncluded ‘‘su[ie][td]’’, then suit, if ‘‘[ˆs]e[ae]r’’ then year, if ‘‘water’’ then water,
 t

314
significant predictor (AIC = 4555.6 for an empty model vs. 1909.4
for a model with the predictor).

Estimates from the multinomial logistic regression model in
Fig. 6 illustrate that each unique one-hot vector is associated with
a unique lexical item. Each lexical item has a single substantial
peak in estimates per latent code. The only exception appears
to be rag without a clear representation. The highest proportion
of rag appears for c1 = 2 at approximately 20%. However, this
particular latent code (c1 = 2) already outputs a substantially
higher proportion of dark. It thus appears that the Generator fails
to generate outputs such that the difference between the two
outputs would be substantial. There is a high degree of phonetic
similarity precisely between these two lexical items: the vowels
[æ] and [A] are acoustically similar and both lexical items contain
a rhotic [ô] and a voiced stop. Success rates for the other nine
lexical items range from 39%–99% in raw counts (for all raw
counts, see the Appendix).

To illustrate that the network learns to associate lexical items
with unique values in the latent code (one-hot vector), we gen-
erate outputs by manipulating the one-hot vector for each value

if ‘‘dar’’ then dark, if ‘‘greas’’ then greasy, if ‘‘[kc].*r’’ then carry, if ‘‘[ao][wia]ly’’
hen oily, if ‘‘rag’’ then rag, if ‘‘as’’ then ask, if ‘‘li’’ then like.
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Fig. 6. Estimates of a multinomial logistic regression model with coded tran-
scribed outputs as the dependent variable and the latent code with ten levels
that correspond to the ten unique one-hot vectors in the model trained on ten
lexical items from TIMIT after 27,103 steps.

and by keeping the rest of the latent space (z) constant. Such
manipulation can result in generated samples, where each

atent space outputs a distinct lexical item associated with that
alue ([20000000000] outputs dark, [02000000000]water, etc.).15
ote that the acoustic contents of the generated outputs that
orrespond to each lexical item are substantially different (as

15 Often each series outputs one or two divergences from the ideal output.
 p
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Table 4
Eight content lexical items from the TIMIT database used for training in the
fiwGAN architecture (Section 3.3) with their corresponding IPA transcription
(based on general American English) and counts of data points for each item.
Word IPA Data points

ask ["æsk] 633
carry ["khæôi] 632
dark ["dAôk] 644
greasy ["gôisi] 630
like ["laIk] 697
suit ["sut] 630
water ["wORÄ] 649
year ["jIô] 650

Total 5165

illustrated by the spectrograms in Fig. 7), which means that the
latent code (c) needs to be strongly associated with the individual
lexical items, given that all the other 90 variables in the latent
space (the z-variables which constitute 90% of all latent space)
are kept constant and that the entire change of the output occurs
only due to change of the latent code c. In other words, by only
changing the latent code and setting the variables to desired
values while keeping the rest of the latent space constant, we can
generate desired lexical items with the Generator network.

3.3. fiwGAN on 8 lexical items

To evaluate lexical learning in a fiwGAN architecture, we train
the fiwGAN model with three featural variables (φ). Because the
latent code in fiwGAN is binomially distributed, three featural
variables correspond to 23

= 8 categories. The model was trained
on 8 content lexical items with more than 600 attestations in the
TIMIT database (listed in Table 4). The model used for the analysis
was trained after 20,026 steps which correspond to a similar
number of epochs as the 10-word ciwGAN model in Section 3.2
(∼ 1241 epochs). Like for the ciwGAN models (Sections 3.1 and
3.2), we generate 100 outputs for each unique binary code given
the 3 featural variables with the values of the features set outside
of the training range to 2 instead of 1: [0, 0, 0], [0, 0, 2], [0, 2, 0],
[0, 2, 2], [2, 0, 0], etc.

As expected, learning in the fiwGAN architecture is more
challenging compared to ciwGAN. The network has only log2(n)
variables to encode n lexical items (compared to n variables for
n classes in ciwGAN). Despite the latent space for lexical learning
being highly reduced, an analysis of generated data in the fiwGAN
architecture suggests that the Generator learns to associate each
binary code with a distinct lexical item (for an additional test, see
Section 3.3.2).

To test significance of the featural code (φ) as a predictor,
the annotated data were fit to a multinomial logistic regression
model as in Sections 3.1 and 3.2. The dependent variables are
again coded transcriptions16 and the independent variable is the
featural code (φ) with the eight unique levels as predictors: each
for unique binary code. The difference in AIC between the model
that includes the unique featural codes as predictors (φ) and the
empty model (2038.5 vs. 3409.7) suggests that featural values are
significant predictors.

Estimates of the regression model in Fig. 8 illustrate that most
lexical items receive a unique featural representation. Six out of
eight lexical items (dark, ask, suit, greasy, year and carry) all have
distinct latent featural representations that can be associated
with these lexical items. Success rates for the six items have a

16 The outputs are coded as described in fn. 14 for the 10-word ciwGAN
model, except that if ‘‘[ae].*[sf]’’, then ask, because outputs contain a large
roportion of s-like frication noise that can also be transcribed with f.
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Fig. 7. Waveforms and spectrograms (0–8000 Hz) of generated outputs (of a model trained on 10 items after 27,103 steps) when only the latent code is manipulated
and the remaining 90 latent random variables are kept constant across all 10 outputs. Transcriptions (by the author) suggest that each lexical item is associated
with a unique representation.
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mean of 50.8% (in raw counts) with the range of 46% to 61%.
Crucially, there appears to be a single peak in regression estimates
per lexical item for these six words, although the peaks are less
prominent compared to the ciwGAN architecture (expectedly so,
since learning is significantly more challenging in the featural
condition). Water and like are more problematic: [0, 2, 0] outputs
ike and water at approximately the same rate. It is possible
that learning of the two lexical items is unsuccessful. Another
possibility is that [0, 2, 0] is the underlying representation of
water because it is water ’s most frequent code that is not already
taken by another lexical item. According to the guidelines in Sec-
tion 3.1, like would have to be represented by [0, 0, 0], because it
outputs the highest proportion of like that is not already taken for
another lexical items. That this assignment of underlying values
of each featural representation is valid is additionally suggested
by another test in Section 3.3.2.

In the fiwGAN architecture, we can also test significance of
each of the three unique features (φ1, φ2, and φ3). The annotated
data were fit to the same multinomial logistic regression model
as above, but with three independent variables: the three features
each with two levels (0 and 2). AIC is lowest when all three
variables are present in the model (2135.5) compared to when
φ1, φ2, or φ3 are removed from the model (2527.2, 2413.0, and
2773.3, respectively).

3.3.1. Featural learning
An advantage of the fiwGAN architecture is that it can model

classification (i.e. lexical learning) and featural learning of pho-
netic and phonological representations simultaneously. We can
assume that lexical learning is represented by the unique binary
code for each lexical item. Phonetic and phonological information
can be simultaneously encoded with each unique feature (φ). That
honetic and phonological information is learned with binary
eatures has been the prevalent assumption in linguistics for
ecades (Clements, 1985; Hayes, 2009). Recently, neuroimaging
vidence suggesting that phonetic and phonological information
s stored as signals that approximate phonological features has
een presented in Mesgarani et al. (2014).
An analysis of featural learning in fiwGAN — how featural

odes simultaneously represent unique lexical items and pho-
etic/phonological representations, can be performed by using
ogistic regression as proposed in the following paragraphs as
ell as with a number of exploratory techniques described in this
ection.
Three out of eight lexical items used in training of the fiwGAN

odel include the segment [s]: a voiceless alveolar fricative with
distinct phonetic marker — a period of frication noise. The
316
assumed binary codes for the three items containing [s], ask,
reasy, and suit are [2, 2, 0], [2, 0, 0], and [2, 0, 2] (see Fig. 8).
e observe that value 2 for feature φ1 is common to all three of

he lexical items containing an [s].
To test the effects of φ1 on presence of [s] in the output,

00 annotated outputs (100 for each of the eight unique binary
odes) were fit to a logistic regression model. The dependent
ariable is presence of a s-like frication noise: if a transcribed
utput contains an s, z, or f, the output is coded as success.
he independent predictors in the model are the three features
ithout interactions: φ1, φ2, and φ3, each with two levels (0 and
). Fig. 10 features estimates of the regression model. While all
hree features are significant predictors, the effect appears to be
ost prominent for φ1.
It is possible that the Generator network in the fiwGAN archi-

ecture uses feature φ1 to encode presence of segment [s] in the
utput. This distribution can also be due to chance. Further work
s needed to test whether presence of phonetic/phonological el-
ments in the output can be encoded with individual features.
wo facts from the generated data, however, suggest that the
enerator in the fiwGAN architecture associates φ1 with presence
f [s].
First, while ask, greasy, and suit all have φ1 = 2 in common,

he fourth unique featural code with φ1 = 2 ([2, 2, 2]) is
ssociated with dark. Spectral analysis of lexical item dark in the
raining data reveals that aspiration of [k] in dark is in the train-
ng data from TIMIT frequently realized precisely as an alveolar
ricative [s] (likely due to contextual influences).17 Approximately
7% data points for dark in the training data from TIMIT contain a
s]-like frication noise during the aspiration period of [k].18 Fig. 9
ives two such examples from TIMIT of dark with a clear frication
oise characteristic of an [s] sound after the aspiration noise of
k]. In other words, 3 lexical items in the training data contain
n [s] as part of their phonemic representation and therefore
eature it consistently. The Generator outputs data such that
single feature (φ1 = 2) is common to all three items. An

dditional item often involves a s-like element and the network
ses the same value (φ1 = 2) for its unique code ([2, 2, 2]).
here is approximately a 8.6% chance this distribution is random
of 70 possible featural code assignment for eight items, four
f which contain some phonetic feature such as [s], six or 8.6%
ombinations contain the same value in one feature).

17 In many TIMIT sentences, dark appears before suit which causes the
aspiration of [k] to be influenced by the following [s].
18 This estimate is based on acoustic analysis of the first 100 training data
points from the TIMIT database.
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Fig. 8. Estimates of a multinomial logistic regression model with coded tran-
scribed outputs as the dependent variable and the latent code with eight levels
that correspond to the eight unique binary codes in the model trained on eight
lexical items from TIMIT after 20,026 steps.

As already mentioned, the network outputs mostly dark for the
eatural code [2, 2, 2], but a substantial portion of outputs also
eviate from dark. A closer look at the structure of the innovative
utputs for the [2, 2, 2] code reveals that a substantial proportion
f them (35) contain an [s]. As a comparison, other unique codes
ith φ1 set at the opposite value 0 ([0, 0, 0], [0, 0, 2], [0, 2, 0], [0,
, 2]) output 43, 41, 1, and 0 outputs containing an s, z, or f. In
ther words, for two unique codes given φ1 = 0, the network
enerates 0 or 1 output containing an s-like segment. For the
wo other codes, the network generates outputs with a similar
ate of s-containing sequences as [2, 2, 2] (dark). However, the
otivation for an s-containing output in [0, 2, 2] is clear: year is

n three training data points actually realized as [SIô] (shear). The
317
Fig. 9. Waveforms and spectrograms (0–8000 Hz) of two lexical items dark from
TIMIT with a clear s-like frication noise during the aspiration after the closure
of [k] (highlighted).

Fig. 10. Fitted values with 95% CIs of a logistic regression model with presence
of [s]-like frication in the transcribed outputs as the dependent variable and the
three features φ1 , φ2 , and φ3 as predictors.

[0, 0, 0] does not have a distinct underlying lexical item, so the
high proportion of outputs with [s] is not unexpected.

The second piece of evidence suggesting that (φ1 = 2) rep-
esents presence of [s] in the output are innovative outputs
hat violate the training data distribution. The majority of s-
containing outputs when φ1 = 0 are non-innovative sequences
that correspond to lexical items from the training data. The most
notable feature of the s-containing outputs for [2, 2, 2] (dark),
on the other hand, is their innovative nature. Sometimes, these
outputs can indeed be transcribed as suit, but in some cases the
Generator outputs an innovative sequence that violates training
data but is still linguistically interpretable. In fact, some of the
outputs with [2, 2, 2] are directly interpretable as adding an [s]
to the underlying form dark. Two innovative sequences that can
be reliably transcribed as start ["stAôt] are given in Fig. 11 and
additional two transcribed as sart ["sAôt] in Fig. 12. The network
is never trained on a [st] sequence, let alone on the lexical item
start, yet the innovative output is linguistically interpretable and
remarkably similar to the [st] sequence in human outputs that
the network never ‘‘sees’’. Spectral analysis illustrates a clear
period of frication noise characteristic of [s] followed by a period
of silence and release burst characteristic of a stop [t]. Fig. 11
provides two examples from the TIMIT database with the [st]
sequence that was never part of the training data, yet illustrates
how acoustically similar the innovative generated outputs in the
fiwGAN architecture are to real speech data. This example consti-
tutes one of the prime cases of high productivity of deep neural
networks (for a recent survey on productivity in deep learning,
see Baroni, 2020).
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Fig. 11. (left) Waveforms and spectrograms (0–8000 Hz) of two innovative outputs for φ = [2, 2, 2] transcribed as ["stAôt]. The fiwGAN network trained after 20,026
teps thus outputs innovative sequence [st] that is absent from the training data, but is a linguistically interpretable output that can be interpreted as adding [s]
o dark. (right) Waveforms and spectrograms (0–8000 Hz) of two lexical items from TIMIT that are not part of training data, but illustrate that the innovative [st]
equence in the generated data is acoustically very similar to the [st] sequence in human outputs that the network has no access to.
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Fig. 12. Waveforms and spectrograms (0–8000 Hz) of two innovative outputs
or φ = [2, 2, 2] transcribed as ["sAôt].

.3.2. Underlying representations
Beguš (2020a) argues that the underlying value of a feature

an be uncovered by manipulating a given feature well be-
ond the training range. For example, Beguš (2020a) proposes
technique for identifying variables that correspond to pho-
etic/phonological properties in the outputs. By setting the values
318
of the identified features well beyond the training range, the
network almost exclusively outputs the desired property (e.g. a
segment [s] in the output).

This effect of the underlying value of a variable is even more
prominent in the fiwGAN architecture. When the values of latent
features (φ) are set at 0 and 2, success rates appear at approxi-
mately 50% (Fig. 8). Value 2 was chosen for analysis in Section 3.3,
because non-categorical outcomes yield more insights into learn-
ing. However, we can reach almost categorical accuracy when
the values are set substantially higher than 2. For example, when
we generate outputs with values of featural code set at 5 ([5, 5,
5]), the network generates 93/100 outputs19 that can be reliably
transcribed as dark and another 7 that closely resemble dark, but
have a period of frication instead of the initial stop (sark). With
even higher values such as 15, the Generator outputs 100/100
samples transcribed as dark for [15, 15, 15]. Similarly, [5, 5, 0]
yields ask in 97/100 cases; it yields an innovative output with
final [i] in three cases. At [15, 15, 0], the Generator outputs
100/100 ask. The success rates differ across featural codes, but
alue 15 triggers almost categorical outputs for most of them. [15,
, 0] yields 93/100 greasy (1 unclear and 6 ask). For [15, 0, 15],
he network outputs a [sVt] sequence for suit (where V=vowel)
7/100 times. In 13 examples, the frication noise does not have
pronounced s-like frication noise, but is more distributed and
loser to aspiration noise of [k]. The identity of the vowel is

19 Counts in this sections are performed by the author only.
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ntriguing: the formant values are not characteristic of [u] (as in
uit), but rather of a lower more central vowel (F1 = 663 Hz,
2 = 1618 Hz, F3 = 2515 Hz for one listing). Since formant
ariability is high in the training data, the underlying prototypical
epresentation likely defaults to a more central vowel.

[0, 0, 15] yields carry in 100/100 outputs, but in 13 of these
utputs the aspiration noise of [k] is distributed with a peak
n higher frequencies for an acoustic effect of [ts]. [0, 15, 0]
ields 100/100 water. The acoustic output is reduced to include
nly the main acoustic properties of water: formant structure for
wO] followed by a consonantal period for [R] and a very brief
sometimes missing) vocalic period (Fig. 13).

The only two codes that do not yield straightforward under-
ying representations are [0, 0, 0] and [0, 2, 2]. It appears that
he Generator is unable to strongly associate [0, 0, 0] with any
exical representation, likely due to lack of positive values in
his particular code. This means that the network needs to learn
nderlying representations for two remaining lexical items with
single code: like and year, both likely associated with [0, 2, 2].
hen set to [0, 5, 5], the Generator outputs both like and year,20
ut at [0, 10, 10] and [0, 15, 15] the underlying representation is
n acoustic output that is difficult to characterize and is likely a
lend of the two representations (acoustically closer to like; see
ig. 13). Future analyses should thus include log2(n) variables for
− 1 classes in the fiwGAN architecture.
Another interesting fact emerges when we set the featural

odes to high values such as 5 or 15. The outputs at these high
alues are minimally variable: the outputs are almost identical
espite the 97 random latent variables z being randomly sam-
led for each output, as illustrated by Fig. 13. It appears that
he network associates unique featural codes with prototypical
nderlying representations of lexical items. When values are
ower, other random latent variables (z) cause variation in the
utputs, but the high values (such as 5 or 15) of the featural
odes φ override this variation and reveal the underlying lexical
epresentation for each featural code.

The generative test with values set well above the train-
ng range strongly suggests that the Generator associates lexical
tems with unique codes and likely represents them with proto-
ypical acoustic values. The test also confirms that the assumed
nderlying lexical items identified with multinomial logistic re-
ression (Fig. 8) are correct.

.4. fiwGAN on the entire TIMIT

To test how the proposed architecture scales to substantially
arger training datasets, we train the fiwGAN architecture on the
ntire TIMIT database. TIMIT was sliced for words into the same
ormat as described in Section 3.1.1, which yields 54,378 lexical
tems in the training data. Because TIMIT contains approximately
,229 unique lexical items, we train the fiwGAN network with 13
ode variables, which allows for 213

= 8,192 unique classes. The
umber of possible classes is higher than the number of unique
tems (by about 1,963 or 24.0%). This experiment thus also tests
hether lexical learning emerges in a model in which the number
f classes differs from the number of lexical items. The network
as trained for 179,528 steps (∼1056 epochs).21
Training the networks to learn lexical items from the entire

IMIT is a challenging task. First, neither the Generator (tested
ere for lexical learning) nor the Q-network (forcing the Gener-
tor to output informative data) have direct access to the data.

20 Occasionally, [0, 5, 5] also yields an output that can be characterized as
ater.
21 The training on an NVIDIA GeForce GTX 1080 Ti takes approximately 160
teps per 300 s for a total of ∼ 4 days and 12 h. The models with higher number
of steps face mode collapse issues, common in the GAN architecture.
319
The only network that actually has a direct access to the training
data is the Discriminator, which is the least relevant network in
the architecture for learning lexical information. This stands in
stark contrast with the autoencoder architecture, in which the
network that learns lexical representations in its latent space
has a direct access to the data. Second, TIMIT is highly variable
and contains lexical items that are phonetically highly reduced.
Many items contain only one token per item, and in general, the
token distribution of the lexical items varies substantially. The
dimension of the vector representing lexical items in our models
is highly reduced: only 13 binary code variables (13% of the latent
variables) are available to the model to encode identity of 6,229
unique items with 54,378 total tokens.

Based on inferential statistical tests in Sections 3.1, 3.2, and
3.3, we argued that the models show clear evidence for lexical
learning. In a model with fewer codes, we can fit all annotations
to a multinomial logistic regression model and perform hypoth-
esis testing for lexical learning. In a larger model with the entire
TIMIT as the training data, it is challenging to manually analyze
outputs of all 8,192 binary codes given the thirteen latent features
(φ) in the model. Instead, we use the argument from the models
with fewer variables and test lexical learning by generating data
with a subset of possible latent codes. Evidence for lexical learn-
ing is evaluated in the following way: if the Generator outputs
one lexical item more often than other lexical items for each
unique code, it is reasonable to assume (based on the results in
Sections 3.1, 3.2, and 3.3) that the particular lexical item is the
underlying learned representation of the corresponding unique
code, as is confirmed by statistical tests in the models with fewer
variables.

Despite the highly challenging learning task and the mismatch
between the number of classes and the number of actual lexical
items, the fiwGAN does appear to show evidence for lexical learn-
ing even when trained on the entire TIMIT dataset. We choose
70 out of possible 8,192 unique latent codes and generate sets of
outputs, each for one of the 70 chosen codes. We only manipulate
the latent code (φ) across the 70 sets of outputs; all other 87/100
variables z are identical across the sets of outputs. The values of
the latent code are set to 0 or either 1.0 or a slightly higher value
of 1.1 (with no substantial differences in outputs observed among
1.0 or 1.1). As will be argued below, the Generator performs well
on the lexical learning task even when the latent variables are not
manipulated to marginal levels outside of the training range.22

Based on exploration of the 70 unique latent codes, three types
f outcomes are observed: (i) the Generator outputs predomi-
antly one clearly identifiable lexical item for a latent code; (ii)
he Generator outputs predominantly one sequence of sounds for
latent code, but the actual underlying lexical item is difficult

o establish; and (iii) the Generator outputs unclear and variable
utputs for a latent code.23 The first and desired outcome, where
he Generator outputs almost exclusively one lexical item that is
asily recognizable per one latent code, is the most frequent.24
or approximately 29 codes (out of 70 tested or 41.4%), the Gener-
tor outputs mostly one clearly recognizable lexical item. Fig. 14
hows the first ten generated outputs for fifteen out of 29 latent
ariables for which a clear underlying lexical item can be estab-
ished. As already mentioned, the other latent variables (z) are
identical in the ten outputs across the 15 sets. There is relatively

22 In fact, the Generator outputs unintelligible outputs when values are ma-
nipulated substantially outside of the training range (which stands in opposition
to the models in Sections 3.1, 3.2, and 3.3).
23 All outputs in the current section were analyzed and annotated by the
author.
24 In some cases, the underlying lexical item is not the most frequent, but the
only one that is identifiable.
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Fig. 13. Waveforms of the first five generated outputs for each featural code when values are set at 15. The waveforms clearly show that the outputs feature minimal
ariability. Below each waveform is a spectrogram (0–8000 Hz) of the first output (the topmost waveform). All seven outputs have the exact same values for 97
andom latent variables (z); they only differ in the three featural codes φ.
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ittle variation in the outputs: representation of a lexical item
ppears relatively uniform, as suggested by the spectrograms.
It appears that the network learns both very frequent words

such as that or is), but also substantially less frequent words,
such as let which appears in 23 tokens or dirty in only 15 tokens
n the training data. A change of a single feature (φ) can result in
substantial change in the output. For example, a change in φ1

rom [0, 1.1, 1.1, 0, 0, 0, 0, 0, 0, 0, 1.1, 1.1, 0] to [1.1, 1.1, 1.1, 0,
, 0, 0, 0, 0, 0, 1.1, 1.1, 0] results from is to let (with occasional
pill-over of is as was also observed in the previous models). A
hange in φ2 from [0, 0, 0, 0, 0, 1.1, 0, 0, 0, 0, 0, 0, 0] to [0, 1.1, 0,
0, 0, 1.1, 0, 0, 0, 0, 0, 0, 0] results in greasy and see. Some words,
on the other hand, can be represented with multiple latent codes
and occasionally, the change of one feature (φ) does not result in
substantial change of the output.
While the networks appear to associate one lexical item per

ode even when there are more classes than lexical items (6,229
s. 8,192), two or more unique codes can be associated with the
ame lexical item. There are approximately six such (mostly high
requency) words among the 70 explored unique latent codes:we,
he, dirty, that, and let are represented with two binary codes; is
with three codes. If the 70 latent codes are representative, we
might expect a relative high number of the unique codes to be as-
sociated with a single lexical item. The proportion of unique codes
actually associated with the same word (for each word associated
with multiple codes), however, is probably substantially less than
2/70 (=234 of the total 8,192) or 3/70 (=350 of the total 8,192 in
320
case of is) precisely because the codes with which a single lexical
tem is associated more than once share many features. From the
erspective of spoken term discovery, the multiple association
s less problematic, but further work is needed to mitigate this
roblem. From a cognitive modeling perspective, the multiple
ssociation is not ideal. There might be two reasons for why
his is also appealing. High frequency items have more variation
n spoken language. In this way, the network can encode the
ame high frequency item, but with different phonetic properties.
econd, the codes with which the network encodes the same item
iffer only in a single feature or two in five out of six cases (is is
he only item that differs in up to six features). This allows for a
nique representation of a lexical item in at least a large subset
f variables.
Underlying values of the remaining 41 latent codes are not

eadily identifiable based on the generated outputs, but their
utputs are not unstructured either. There is clear phonological
tructure in approximately 27 outputs (out of 70 or 38.6%), but
he exact lexical item is difficult to establish. Often, there is little
ariation in the output. For example, 8 (80%) out of 10 generated
utputs for a specific latent code feature a sequence of [s] and
p] and a following vowel ([spV] where V = vowel), but there
s variation in the realization of the vowel and the exact lexical
tem cannot be identified. Similarly, one latent code outputs [ôisV]
n 7/10 outputs (especially frequent is [ôisi]), yet it is difficult to
stablish which word [ôisV] represents.
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Fig. 14. Waveforms and spectrograms of fifteen sets of outputs, each for one unique latent code value. Each set contains ten outputs in which the other 87 latent
ariables z are held constant across the fifteen sets. The Generator only outputs waveforms; spectrograms are given for the purpose of acoustic analysis.
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There are two reasons for why the outputs in this group are
ot easily identifiable as lexical items. Either the networks do
epresent unique lexical items with these codes, but the quality
f the audio output is not high enough for a lexical item to be
ecognizable, or the networks encode combinations of phonemes
ith latent codes rather than unique lexical items. In other words,

t is possible that sub-lexical units can be learned by the Gener-
tor and used to encode information. In the remaining 14 cases
20.0%), the network generates an unclear output that is difficult
o identify as a lexical item and the outputs do not show a
niform phonological structure either.
Some evidence for complex sublexical featural learning

merges in the fiwGAN trained on the entire TIMIT too. For
xample, if φ5−7 are set to 1.1 and φ12 is set to 0, the Generator

frequently outputs a distinct initial velar stop [k] in six out of six
321
selected sets of outputs with this structure of the latent code.25
[k]-initial words are not reliably identified at the beginning of
the word in any of the other 64 tested codes. While the items
except quite are not clear enough to fall in group (i), the initial
[k] is clearly identifiable across the six sets. Apart from the initial
[k], the outputs with this structure differ substantially in their
phonetic properties (e.g. outputs can approximate items such as
culture, car(t), quite, color or [kV]). It is reasonable to assume that
he network encodes a sublexical phonetic property – presence
f initial [k] – with a subset of latent features.
The results suggest that the Generator at least partially learns

o encode lexical items with unique latent codes in the fiwGAN

25 There are more outputs with this structure of features that have not been
tested.
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rchitecture even when trained on 54,378 tokens of 6,229 lexical
tems from TIMIT. Based on a subsample of latent codes, the Gen-
rator outputs a clearly identifiable lexical item in approximately
1.4% of tested codes. In most cases, the one lexical item is the
ajority output (as clear from Fig. 14) realized with relatively

ittle phonetic variability. There are many properties of TIMIT data
hat the Generator could learn to encode into 8,192 classes, but it
oes appear that it is precisely lexical items that the network is
earning. This experiment also suggests that the Generator learns
o represent lexical items with unique codes even if the number
f possible classes and the number of actual items do not match
nd even if there is a substantial difference in the frequency of
ndividual items.

. Discussion and future directions

This paper proposes two architectures for unsupervised mod-
ling of lexical learning from raw acoustic data with deep neural
etworks. The ability to retrieve information from acoustic data in
uman speech is modeled with a Generator network that learns
o output data that resemble speech and, simultaneously, learns
o encode unique information in its outputs. We also propose
echniques for probing how deep neural networks trained on
peech data learn meaningful representations.
The proposed fiwGAN and ciwGAN models are based on the

enerative Adversarial Network architecture and its implementa-
ions in WaveGAN (Donahue et al., 2019), DCGAN (Radford et al.,
015), and InfoGAN (Chen et al., 2016; Rodionov, 2018). Follow-
ng Beguš (2020a), we model language acquisition as learning of a
ependency between the latent space and generated outputs. We
ntroduce a network that forces the Generator to output data such
hat information is retrievable from its acoustic outputs and pro-
ose a new structure of the latent variables that allows featural
earning and a very low-dimension vector representation of lex-
cal items. Lexical learning emerges in an unsupervised manner
rom the architecture: the most efficient way for the Generator
etwork to output acoustic data such that unique information
s retrievable from its data is to encode unique information in
ts acoustic outputs such that latent codes coincide with lexical
tems in the training data. The result is thus a deep convolutional
eural network that takes latent codes and variables and outputs
nnovative data that resembles training data distributions as well
s learns to associate lexical items with unique representations.
Four experiments tested lexical learning in ciwGAN and fiw-

AN architectures trained on tokens of five, ten, eight, and 6,229
liced lexical items in raw audio format from a highly variable
atabase — TIMIT. The paper proposes that in smaller models lexi-
al learning can be evaluated with multinomial logistic regression
n generated data. Evidence of lexical learning is present in all
our experiments. It appears that the Generator learns to associate
exical items with unique latent code — categorical (as in ciwGAN)
r featural (as in fiwGAN). By manipulating the values of latent
odes to value 2, the networks output unique lexical items for
ach unique code and reach accuracy that ranges from 98% to 26%
n the five-word model. To replicate the results and test learning
n a higher number of lexical items, the paper presents evidence
hat the model learns to associate unique latent codes with lexical
tems in the 10-words model as well, with only one exception.
hen trained on the entire TIMIT, the Generator outputs one

learly identifiable lexical item in approximately 41% of latent
odes tested. The paper also proposes a technique for following
ow the network learns representations as training progresses.
e can directly observe how the network transforms an output

hat violates training data into an output that conforms to it by
eeping the latent space constant as training progresses.
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The fiwGAN architecture features, to our knowledge, a new
proposal within the InfoGAN architecture: to model classifica-
tion with featural codes instead of one-hot vectors. This shift
yields the potential to model featural learning and higher-level
classification (i.e. phonetic/phonological features and unique lex-
ical representations) simultaneously. The paper presents evidence
suggesting that the network might use some feature values to
encode phonetic/phonological properties such as presence of [s].
Regression models suggest that φ1 is associated with presence
of [s] in the output (and simple probabilistic calculation reveals
about 8.6% probability that the distribution is due to chance). The
strongest evidence for simultaneous lexical and featural learning
comes from innovative outputs in the fiwGAN architecture. The
network trained on lexical items that lack a sequence of a fricative
and a stop [st] altogether outputs an innovative sequence start
or sart. These innovative outputs can be analyzed as adding a
segment [s] (from suit) to dark, likely under the influence of the
fact that φ1 represents presence of [s].

Innovative outputs that violate training data are informative
for both computational models of language acquisition as well
as for our understanding of what types of dependencies the
networks are able to learn. We discuss several cases of innovative
outputs. Some innovations are motivated by training data distri-
butions (e.g. sear) and reveal how the networks treat acoustically
similar lexical items. For other innovative outputs, such as watery,
the training data contains no apparent motivations. We also
track changes from innovative to conforming outputs as training
progresses.

We argue that innovative outputs are linguistically inter-
pretable and acoustically very similar to actual speech data that
is absent from the training data. For example, an innovative [st]
sequence in start corresponds directly to human outputs with
this sequence that were never part of the training data. Further
comparisons of this type should yield a better understanding on
how the combinatorial principle in human language can arise
without language-specific parameters in a model.

The paper also discusses how internal representations in deep
convolutional networks can be identified and explored. We argue
that by setting the latent values substantially beyond the training
range (as suggested for phonological learning in Beguš, 2020a),
the Generator almost exclusively outputs one unique lexical item
per each unique featural code (with only one exception) in the
fiwGAN architecture on eight lexical items. In other words, for
very high values of the featural code (φ), lexical learning appears
to be near categorical. The variability of the outputs is minimal
at such high values (e.g. 15). It appears that setting the featural
code to such extreme values reveals the underlying representa-
tion of each featural code. This property is highly desirable in a
model of language acquisition and has the potential to reveal the
underlying learned representations in the GAN architecture.

Several further experiments and improvements to the model
are left to future work. The proposed architecture allows testing
of any property of the data and probing the learned representa-
tion behind each latent code (or variable; as per Beguš, 2020a).
For example, we can train the network on n latent codes or
features, which effectively means we are forcing the network to
learn n (or 2n) most informative categories in the data. Manipu-
lating the latent codes to marginal levels represents a technique
to test which properties about the data the network learns in
a generative fashion. We can thus test how deep convolutional
networks learn informative properties about the data and directly
observe what those categories are. Representation of any process
in speech can thus be modeled (for an identity-based pattern,
see Beguš, 2020b). Second, the current paper only analyzes the
Generator network in the generative fashion, but the architecture
also allows an analysis of the Q-network in discriminative lexical
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aw counts for outcomes of the ciwGAN model trained on five lexical items
fter 8011 steps (Section 3.1.1). The outcomes are coded as described in fn. 11

else rag oily water year suit

c1 7 0 0 0 21 72
c2 18 0 0 0 70 12
c3 6 0 10 84 0 0
c4 13 0 26 61 0 0
c5 2 98 0 0 0 0

Table A.6
Raw counts for outcomes of the ciwGAN model trained on five items after 19,244
steps (Section 3.1.2). The outcomes are coded as described in fn. 11.

else rag oily water year suit

c1 17 0 0 0 9 74
c2 13 0 0 0 71 16
c3 10 0 12 78 0 0
c4 15 0 37 48 0 0
c5 6 92 2 0 0 0

Table A.7
Raw counts for outcomes of the ciwGAN model trained on ten items after 27,103
steps (Section 3.2). The outcomes are coded as described in fn. 14.

else suit rag ask carry like greasy year oily water dark

c1 29 0 21 0 1 0 0 0 0 0 49
c2 31 0 0 0 0 4 0 0 8 57 0
c3 37 0 0 0 10 1 0 11 39 2 0
c4 20 0 8 0 1 1 0 65 0 0 5
c5 1 0 0 0 0 0 99 0 0 0 0
c6 10 0 0 26 0 64 0 0 0 0 0
c7 20 0 0 0 76 0 0 4 0 0 0
c8 23 0 0 58 0 18 0 0 0 0 1
c9 63 0 1 0 1 2 0 2 7 18 6
c10 8 92 0 0 0 0 0 0 0 0 0

Table A.8
Raw counts for outcomes of the fiwGAN model trained on eight items after
20,026 steps (Section 3.3). The outcomes are coded as described in fn. 16.

else dark ask suit greasy year water carry like

[0, 0, 0] 43 0 15 0 17 3 3 2 17
[0, 0, 2] 18 1 0 23 0 11 0 47 0
[0, 2, 0] 32 0 0 0 0 0 32 0 36
[0, 2, 2] 18 0 0 0 0 50 32 0 0
[2, 0, 0] 20 1 19 0 47 13 0 0 0
[2, 0, 2] 20 7 0 46 0 0 0 27 0
[2, 2, 0] 15 1 61 0 22 0 0 1 0
[2, 2, 2] 25 54 0 19 0 0 0 2 0

learning tasks (such as ABX). An experiment with novel unob-
served test data fed to the Q-network would reveal the model’s
ability to assign unique codes to individual lexical items. Such
a network would be highly desirable in an unsupervised lexical
learning setting or for very low dimension acoustic word embed-
ding tasks. Third, the paper proposes a technique to follow lexical
learning as training progresses (see Section 3.1). A superficial
comparison between lexical learning in the proposed models and
language-acquiring children could yield further insights into the
computational modeling of language acquisition (for an overview
of the literature on how lexical learning progresses in language
acquisition, see Gaskell & Ellis, 2009). The proposed architecture
can also be used for testing lexical learning when trained on
adult-directed vs. child-directed speech corpora. Finally, future
directions should also include developing a model that could
parse lexical items from a continuous acoustic speech stream and
improving the model’s overall performance.

The proposed model of lexical learning has several further
mplications. Dependencies in speech data are significantly better
nderstood than dependencies in visual data. A long scientific
323
tradition of studying dependencies in phonetic and phonological
data in human languages yields an opportunity to use linguistic
data to probe the types of dependencies deep neural networks
can or cannot learn (Beguš, 2020b). The proposed architectures
allow us to probe what types of dependencies the networks can
learn, how they encode unique information in the latent space,
and how self-organization of retrievable information emerges in
the GAN architecture. The models also have some basic impli-
cations for unsupervised text-to-speech generation tasks: ma-
nipulating the latent variables to specific values results in the
Generator outputting desired lexical items.
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