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Training deep neural networks on well-understood dependencies in speech data can

provide new insights into how they learn internal representations. This paper argues that

acquisition of speech can be modeled as a dependency between random space and

generated speech data in the Generative Adversarial Network architecture and proposes

a methodology to uncover the network’s internal representations that correspond

to phonetic and phonological properties. The Generative Adversarial architecture is

uniquely appropriate for modeling phonetic and phonological learning because the

network is trained on unannotated raw acoustic data and learning is unsupervised

without any language-specific assumptions or pre-assumed levels of abstraction. A

Generative Adversarial Network was trained on an allophonic distribution in English,

in which voiceless stops surface as aspirated word-initially before stressed vowels,

except if preceded by a sibilant [s]. The network successfully learns the allophonic

alternation: the network’s generated speech signal contains the conditional distribution

of aspiration duration. The paper proposes a technique for establishing the network’s

internal representations that identifies latent variables that correspond to, for example,

presence of [s] and its spectral properties. By manipulating these variables, we actively

control the presence of [s] and its frication amplitude in the generated outputs. This

suggests that the network learns to use latent variables as an approximation of phonetic

and phonological representations. Crucially, we observe that the dependencies learned

in training extend beyond the training interval, which allows for additional exploration of

learning representations. The paper also discusses how the network’s architecture and

innovative outputs resemble and differ from linguistic behavior in language acquisition,

speech disorders, and speech errors, and how well-understood dependencies in speech

data can help us interpret how neural networks learn their representations.

Keywords: generative adversarial networks, deep neural network interpretability, language acquisition, speech,

voice onset time, allophonic distribution

1. INTRODUCTION

How to model language acquisition is among the central questions in linguistics and cognitive
science in general. Acoustic speech signal is the main input for hearing infants acquiring
language. By the time acquisition is complete, humans are able to decode and encode information
from or to a continuous speech stream and construct a grammar that enables them to do
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so (Saffran et al., 1996, 2007; Kuhl, 2010). In addition to
syntactic, morphological, and semantic representations, the
learner needs to learn phonetic representations and phonological
grammar: to analyze and in turn produce speech as a continuous
acoustic stream represented by mental units called phonemes.
Phonological grammar manipulates these discrete units and
derives surface forms from stored lexical representations. The
goal of linguistics and more specifically, phonology, is to explain
how language-acquiring children construct a phonological
grammar, how the grammar derives surface outputs from inputs,
and what aspects of the grammar are language-specific in order
to tease them apart from those aspects that can be explained by
general cognitive processes or historical developments (de Lacy,
2006; Moreton, 2008; Moreton and Pater, 2012a,b; de Lacy and
Kingston, 2013; Beguš, 2018b).

Computational models have been invoked for the
purpose of modeling language acquisition and phonological
grammar ever since the rise of computational methods and
computationally informed linguistics (for an overview of the
literature, see Alderete and Tupper, 2018a; Dupoux, 2018;
Jarosz, 2019; Pater, 2019). One of the major shortcomings
of the majority of the existing proposals is that learning
is modeled with an already assumed level of abstraction
(Dupoux, 2018). In other words, most of the proposals
model phonological learning as symbol manipulation of
discrete units that already operates on the abstract, discrete
phonological level. The models thus require strong assumptions
that phonetic learning has already taken place, and that
phonemes as discrete units have already been inferred from
continuous speech data (for an overview of the literature, see
Oudeyer, 2005, 2006; Dupoux, 2018).

This paper proposes that language acquisition can be
modeled with Generative Adversarial Networks (Goodfellow
et al., 2014). More specifically, phonetic and phonological
computation is modeled as the mapping from random space to
generated data of a Generative Adversarial Network (Goodfellow
et al., 2014) trained on raw unannotated acoustic speech
data in an unsupervised manner (Donahue et al., 2019). To
the author’s knowledge, language acquisition has not been
modeled within the GAN framework despite several advantages
of this architecture. The characteristic feature of the GAN
architecture is an interaction between the Generator network
that outputs raw data and the Discriminator that distinguishes
real data from Generator’s outputs (Goodfellow et al., 2014).
A major advantage of the GAN architecture is that learning
is completely unsupervised, the networks include no language-
specific elements, and that, as is argued in Section 4 below,
phonetic learning is modeled simultaneously with phonological
learning. The discussion on the relationship between phonetics
and phonology is highly complex (Kingston and Diehl, 1994;
Cohn, 2006; Keyser and Stevens, 2006). Several opposing
proposals, however, argue that the two interact at various
different stages and are not dissociated from each other (Hayes,
1999; Pierrehumbert, 2001; Fruehwald, 2016, 2017). A network
that models learning of phonetics from raw data and shows
signs of phonological learning is likely one step closer to reality
thanmodels that operate with symbolic computation and assume

phonetic learning has already taken place independently of
phonology (and vice versa).

We argue that the latent variables in the input of the
Generator network can be modeled as approximates to phonetic
or potentially phonological representations that the Generator
learns to output into a speech signal by attempting to maximize
the error rate of a Discriminator network that distinguishes
between real data and generated outputs. The Discriminator
network thus has a parallel in human speech: the imitation
principle (Nguyen and Delvaux, 2015). The Discriminator’s
function is to enforce that the Generator’s outputs resemble
(but do not replicate) the inputs as closely as possible. The
GAN network thus incorporates both the pre-articulatory
production elements (the Generator) as well as the imitation
principle (the Discriminator) in speech acquisition. While other
neural network architectures might be appropriate for modeling
phonetic and phonological learning as well, the GAN architecture
is unique in that it combines a network that produces innovative
data (the Generator) with a network that forces imitation
in the Generator. Unlike, for example, autoencoder networks,
the Generative Adversarial network lacks a direct connection
between the input and output data and generates innovative data
rather than data that resembles the input as closely as possible.

We train a Generative Adversarial Network architecture
implemented for audio files in Donahue et al. (2019) (WaveGAN)
on raw speech data that contains information for an allophonic
distribution: word-initial pre-vocalic aspiration of voiceless stops
(["phIt]∼ ["spIt]). The data is curated in order to control for non-
desired effects, which is why only sequences of the shape #TV
and #sTV1 are fed to the model. This allophonic distribution
is appropriate for testing learnability in a GAN architecture,
because the dependency between the presence of [s] and duration
of VOT is not strictly local. To be sure, the dependency is local in
phonological terms, as [s] and T are two segments and immediate
neighbors, but in phonetic terms, a period of closure intervenes
between the aspiration and the period (or absence thereof) of
frication noise of [s]. It is not immediately clear whether a GAN
model is capable of learning such non-local dependencies. To
our knowledge, this is the first proposal that tests whether neural
networks are able to learn an allophonic distribution based on
raw acoustic data.

The hypothesis of the computational experiment presented
in Section 4 is the following: if VOT duration is conditioned
on the presence of [s] in output data generated from noise by
the Generator network, it means that the Generator network
has successfully learned a phonetically non-local allophonic
distribution. Because the allophonic distribution is not strictly
local and has to be learned and actively controlled by speakers
(i.e., is not automatic), evidence for this type of learning
is considered phonological learning in the broadest sense.
Conditioning the presence of a phonetic feature based on the
presence or absence of a phoneme that is not automatic is, in
most models, considered part of phonology and is derived with

1T represents voiceless stops /p, t, k/, V represents vowels (see Figure 4), and #

represents a word boundary.
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phonological computation. That the tested distribution is non-
automatic and has to be actively controlled by the speakers is
evident from L1 acquisition: failure to learn the distribution
results in longer VOT durations in the sT condition documented
in L1 acquisition (see Section 5.1).

The results suggest that phonetic and phonological learning
can be modeled simultaneously, without supervision, directly
from what language-acquiring infants are exposed to: raw
acoustic data. A GAN model trained on an allophonic
distribution is successful in learning to generate acoustic
outputs that contain this allophonic distribution (VOTduration).
Additionally, the model outputs innovative data for which
no evidence was available in the training data, allowing a
direct comparison between human speech data and the GAN’s
generated output. As argued in Section 4.2, some outputs are
consistent with human linguistic behavior and suggest that
the model recombines individual sounds, resembling phonemic
representations and productivity in human language acquisition
(Section 5).

This paper also proposes a technique for establishing the
Generator’s internal representations. The inability to uncover
networks’ representations has been used as an argument against
neural network approaches to linguistic data (among others
in Rawski and Heinz, 2019). We argue that the internal
representation of a network can be, at least partially, uncovered.
By regressing annotated dependencies between the Generator’s
latent space and output data, we identify values in the latent space
that correspond to linguistically meaningful features in generated
outputs. This paper demonstrates that manipulating the chosen
values in the latent space has phonetic effects in the generated
outputs, such as the presence of [s] and the amplitude of its
frication. In other words, the GAN learns to use random noise
as an approximation of phonetic (and potentially phonological)
representations. This paper proposes that dependencies, learned
during training in a latent space that is limited by some interval,
extend beyond this interval. This crucial step allows for the
discovery of several phonetic properties that the model learns.

By modeling phonetic and phonological learning with neural
networks without any language-specific assumptions, the paper
also addresses a broader question of how many language-
specific elements are needed in models of grammar and language
acquisition. Most of the existing models require at least some
language-specific devices, such as rules in rule-based approaches
or pre-determined constraints with features and feature matrices
in connectionist approaches. The model proposed here lacks
language-specific assumptions (similar to the exemplar-based
models). Comparing the performance of substance-free models
with competing proposals and human behavior should result in
a better understanding of what aspects of phonological grammar
and acquisition are domain-specific (Section 5).

In the following, we first survey existing theories of
phonological grammar and literature on computational
approaches to phonology (Section 2). In Section 3, we present
the model in Donahue et al. (2019) based on Radford et al. (2015)
and provide acoustic and statistical analysis of the training
data. The network’s outputs are first acoustically analyzed and
described in Sections 4.1 and 4.2. In Section 4.3, we present a

technique for establishing the network’s internal representations
and test it with two generative tests. In Section 4.5, we analyze
phonetic properties of the network’s internal representations.
Section 5 compares the outputs of the model with L1 acquisition,
speech impairments, and speech errors.

2. PREVIOUS WORK

In the generative tradition, phonological grammar derives surface
phonetic outputs from phonological inputs (Chomsky and Halle,
1968). For example, /p/ is an abstract unit that can surface
(be realized) with variations at the phonetic level. English /p/
is realized as aspirated [ph] (produced with a puff of air)
word-initially before stressed vowels, but as unaspirated plain
[p] (without the puff of air) if [s] immediately precedes it.
This distribution is completely predictable and derivable with
a simple rule (Iverson and Salmons, 1995), which is why the
English phoneme /p/ as an abstract mental unit is unspecified for
aspiration (or absence thereof) in the underlying representation
(/"pIt/ “pit” and /"spIt/ “spit”). The surface phonetic outputs after
the phonological derivation had taken place are ["phIt] with the
aspiration and ["spIt] without the aspiration.

One of themain objectives of phonological theory is to explain
how the grammar derives surface outputs, i.e., phonetic signals,
from inputs, i.e., phonemic representations. Two influential
proposals have been in the center of this discussion, the rule-
based approach and Optimality Theory. The first approach uses
rewrite rules (Chomsky and Halle, 1968) or finite state automata
(Heinz, 2010; Chandlee, 2014) to derive outputs from inputs
through derivation. A connectionist approach called Optimality
Theory (Prince and Smolensky, 2004) and related proposals
such as Harmonic Grammar and Maximum Entropy (MaxEnt)
grammar (Legendre et al., 1990, 2006; Goldwater and Johnson,
2003; Wilson, 2006; Hayes and Wilson, 2008; Pater, 2009; Hayes
and White, 2013; White, 2014, 2017), on the other hand, model
phonological grammar as input-output pairing: the grammar
chooses the most optimal output given an input. These models
were heavily influenced by the early advances in neural network
research (Alderete and Tupper, 2018a; Pater, 2019). Modeling
linguistic data with neural networks has seen a rapid increase in
the past few years (Alderete et al., 2013; Avcu et al., 2017; Kirov,
2017; Alderete and Tupper, 2018a; Dupoux, 2018; Mahalunkar
and Kelleher, 2018; Weber et al., 2018; Prickett et al., 2019,
for cautionary notes, see Rawski and Heinz, 2019). One of the
promising implications of neural network modeling is the ability
to test generalizations that the models produce without language-
specific assumptions (Pater, 2019).

In opposition to the generative approaches, there exists a
long tradition of usage-based models in phonology (Bybee,
1999; Silverman, 2017) which diverges from the generative
approaches in some crucial aspects. Exemplar models (Johnson,
1997, 2007; Pierrehumbert, 2001; Gahl and Yu, 2006; Kaplan,
2017), for example, assume that phonetic representations are
stored as experiences or exemplars. Grammatical behavior
emerges as a consequence of generalization (or computation)
over a cloud of exemplars (Johnson, 2007; Kaplan, 2017).
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In this framework, there is no direct need for a separate
underlying representation from which the surface outputs are
derived (or optimized). Several phenomena in phonetics and
phonology have been successfully derived within this approach
(for an overview, see Kaplan, 2017), and the framework allows
phonology to be modeled computationally. The computational
models often involve interacting agents learning some simplified
phonetic properties (e.g., de Boer, 2000; Wedel, 2006; Kirby and
Sonderegger, 2015).

The majority of existing computational models in phonology
(including finite state automata, the MaxEnt model and the
existing neural network methods) model learning as symbol
manipulation and operate with discrete units—either with
completely abstract made-up units or with discrete units that
feature some phonetic properties that can be approximated as
phonemes. This means that either phonetic and phonological
learning aremodeled separately or one is assumed to have already
been completed (Martin et al., 2013; Dupoux, 2018). This is
true for both proposals that model phonological distributions or
derivations (Alderete et al., 2013; Futrell et al., 2017; Kirov, 2017;
Prickett et al., 2019) and featural organizations (Faruqui et al.,
2016; Silfverberg et al., 2018). The existing models also require
strong assumptions about learning: underlying representations,
for example, are pre-assumed and not inferred from data (Kirov,
2017; Prickett et al., 2019).

Most models in the subset of the proposals that operate
with continuous phonetic data assume at least some level
of abstraction and operate with already extracted features
(e.g., formant values) on limited “toy” data (e.g., Pierrehumbert,
2001; Kirby and Sonderegger, 2015, for a discussion, see Dupoux,
2018). Guenther and Vladusich (2012), Guenther (2016) and
Oudeyer (2001, 2002, 2005, 2006) propose models that use
simple neural maps that are based on actual correlates of
neurons involved in speech production in the human brain
(based on various brain imaging techniques). Their models,
however, do not operate with raw acoustic data (or require
extraction of features in a highly abstract model of articulators;
Oudeyer, 2005, 2006), require a level of abstraction in the
input to the model, and do not model phonological processes—
i.e., allophonic distributions. Phonological learning in most of
these proposals is thus modeled as if phonetic learning (or at
least a subset of phonetic learning) has already taken place: the
initial state already includes phonemic inventories, phonemes as
discrete units, feature matrices that have already been learned, or
extracted phonetic values.

Prominent among the few models that operate with raw
phonetic data are Gaussian mixture models for category-learning
or phoneme extraction (Lee and Glass, 2012; Schatz et al., 2019).
Schatz et al. (2019) propose a Dirichlet process Gaussian mixture
model that learns categories from raw acoustic input in an
unsupervised learning task. The model is trained on English
and Japanese data and the authors show that the asymmetry
in perceptual [l]∼[r] distinction between English and Japanese
falls out automatically from their model. The primary purpose
of the proposal in Schatz et al. (2019) is modeling perception
and categorization: they model how a learner is able to categorize
raw acoustic data into sets of discrete categorical units that have

phonetic values (i.e., phonemes). No phonological processes are
modeled in the proposal.

A number of earlier works in the connectionist approach
included basic neural network architectures to model mapping
from some simplified phonetic space to the discrete phonological
space (McClelland and Elman, 1986; Gaskell et al., 1995; Plaut
and Kello, 1999; Kello and Plaut, 2003). Input to most of
these models is not raw acoustic data (except in Kello and
Plaut, 2003), but already extracted features. Learning in these
models is also not unsupervised: the models come pre-specified
with discretized phonetic or phonological units. None of the
models are generative and do not model learning of phonological
processes, but rather of classifying a simplified phonetic space
with already available phonological elements.

Recently, neural network models for unsupervised feature
extraction have seen success in modeling acquisition of phonetic
features from raw acoustic data (Räsänen et al., 2016; Eloff
et al., 2019; Shain and Elsner, 2019). The model in Shain and
Elsner (2019), for example, is an autoencoder neural network
that is trained on pre-segmented acoustic data. The model takes
as input segmented acoustic data and outputs values that can
be correlated to phonological features. Learning is, however,
not completely unsupervised as the network is trained on pre-
segmented phones. Thiollière et al. (2015) similarly propose
an architecture that extracts units from unsupervised speech
data. Other proposals for unsupervised acoustic analysis with
neural network architecture are similarly primarily concerned
with unsupervised feature extraction (Kamper et al., 2015). These
proposals, however, do not model learning of phonological
distributions, but only of feature representations, do not show
a direct relationship between individual variables in the latent
space and acoustic outputs (as in Section 4.4 and Figure 14),
and crucially are not generative, meaning that the models do not
output innovative data, but try to replicate the input as closely as
possible (e.g., in the autoencoder architecture).

As argued below, the model based on a Generative Adversarial
Network (GAN) learns not only to generate innovative
data that closely resemble human speech, but also learns
internal representations that resemble phonological learning
with unsupervised phonetic learning from raw acoustic data.
Additionally, the model is generative and outputs both the
conditional allophonic distributions and innovative data that can
be compared to productive outputs in human speech acquisition.

3. MATERIALS

3.1. The Model: Donahue et al. (2019)
Based on Radford et al. (2015)
Generative Adversarial Networks, proposed by Goodfellow et al.
(2014), have seen a rapid expansion in a variety of tasks, including
but not limited to computer vision and image generation
(Radford et al., 2015). The main characteristic of GANs is the
architecture that involves two networks: the Generator network
and the Discriminator network (Goodfellow et al., 2014). The
Generator network is trained to generate data from random
noise, while the Discriminator is trained to distinguish real data
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FIGURE 1 | A diagram showing the Generative Adversarial architecture as proposed in Goodfellow et al. (2014) and Donahue et al. (2019), trained on data from the

TIMIT database in this paper.

from the outputs of the Generator network (Figure 1). The
Generator is trained to generate data that maximizes the error
rate of the Discriminator network. The training results in a
Generator (G) network that takes random noise as its input
(e.g., multiple variables with uniform distributions) and outputs
data such that the Discriminator is inaccurate in distinguishing
the generated from the real data (Figure 1).

Applying the GAN architecture to time-series data such as
a continuous speech stream poses several challenges. Recently,
Donahue et al. (2019) proposed an implementation of a Deep
Convolutional Generative Adversarial Network proposed by
Radford et al. (2015) for audio data (WaveGAN); themodel along
with the code in Donahue et al. (2019) were used for training in
this paper. The model takes 1 s long raw audio files as inputs,
sampled at 16 kHz with 16-bit quantization. The audio files are
converted into a vector and fed to the Discriminator network
as real data. Instead of the two-dimensional 5 × 5 filters, the
WaveGAN model uses one-dimensional 1× 25 filters and larger
upsampling. The main architecture is preserved as in DCGAN,
except that an additional layer is introduced in order to generate
longer samples (Donahue et al., 2019). The Generator network
takes as input z, a vector of one hundred uniformly distributed
variables (z ∼ U(−1, 1)) and outputs 16,384 data points, which
constitutes the output audio signal. The network has five 1D
convolutional layers (Donahue et al., 2019). The Discriminator
network takes 16,384 data points (raw audio files) as its input and
outputs a single value. The Discriminator’s weights are updated
five times per each update of the Generator. The initial GAN
design as proposed by Goodfellow et al. (2014) trained the
Discriminator network to distinguish real from generated data.
Training such models, however, posed substantial challenges
(Donahue et al., 2019). Donahue et al. (2019) implement the
WGAN-GP strategy (Arjovsky et al., 2017; Gulrajani et al., 2017),
which means that the Discriminator is trained “as a function that
assists in computing the Wasserstein distance” (Donahue et al.,
2019). The WaveGAN model (Donahue et al., 2019) uses ReLU
activation in all but the last layer for the Generator network,

and Leaky ReLU in all layers in the Discriminator network (as
recommended for DCGAN in Radford et al., 2015). For exact
dimensions of each layer and other details of the model, see
Donahue et al. (2019).

3.2. Training Data
Themodel was trained on the allophonic distribution of voiceless
stops in English. As already mentioned in Section 1, voiceless
stops /p, t, k/ surface as aspirated (produced with a puff of air)
[ph, th, kh] in English in word-initial position when immediately
followed by a stressed vowel (Lisker, 1984; Iverson and Salmons,
1995; Vaux, 2002; Vaux and Samuels, 2005; Davis and Cho,
2006). If an alveolar sibilant [s] precedes the stop, however, the
aspiration is blocked and the stop surfaces as unaspirated [p, t,
k] (Vaux and Samuels, 2005). A minimal pair illustrating this
allophonic distribution is ["phIt] “pit” vs. ["spIt] “spit.” The most
prominent phonetic correlate of this allophonic distribution is
the difference in Voice Onset Time (VOT) duration (Lisker and
Abramson, 1964; Abramson and Whalen, 2017) between the
aspirated and unaspirated voiceless stops. VOT is the duration
between the release of the stop ([p, t, k]) and the onset of periodic
vibration in the following vowel.

The model was trained on data from the TIMIT database
(Garofolo et al., 1993)2. The corpus was chosen because it is one
of the largest currently available hand-annotated speech corpora,
the recording quality is relatively high, and the corpus features
a relative high degree of variability. The database includes 6,300
sentences, 10 sentences per 630 speakers from 8 major dialectal
areas in the US (Garofolo et al., 1993). The training data consist
of 16-bit ·wav files with 16 kHz sampling rate of word initial
sequences of voiceless stops /p, t, k/ (= T) that were followed by a
vowel (#TV) and word initial sequences of /s/ + /p, t, k/, followed

2Donahue et al. (2019) trained the model on the SC09 and TIMIT databases, but

the results are not useful for modeling phonological learning, because the model is

trained on a continuous speech stream and the generated sample fails to produce

analyzable results for phonological purposes.
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FIGURE 2 | Waveforms and spectrograms (0− 8, 000 Hz) of [phæ] (left) and [spæ] (right) illustrating typical training data with annotations from TIMIT. Only the raw

audio data (in ·wav format) were used in training. The annotation illustrates a substantially longer duration of VOT in word-initial stops when no [s] precedes.

by a vowel (#sTV). The training data includes 4,930 sequences
with the structure #TV (90.2%) and 533 (9.8%) sequences with
the structure #sTV (5,463 total). Figure 2 illustrates typical
training data: raw audio files with speech data, but limited to
two types of sequences, #TV and #sTV. Figure 2 also illustrates
that the duration of VOT depends on a condition that is not
immediately adjacent in phonetic terms: the absence/presence of
[s] is interrupted from the VOT duration by a period of closure
in the training data. That VOT is significantly shorter if T is
preceded by [s] in the training data is confirmed by a Gamma
regression model: β = −0.84, t = −49.69, p < 0.0001 (for
details, see Section 1, Supplementary Materials).

Both stressed and unstressed vowels are included in the
training data. Including both stressed and unstressed vowels is
desirable, as this condition crucially complicates learning and
makes the task for the model more challenging as well as more
realistic. Aspiration is less prominent in word-initial stops not
followed by a stressed vowel. This means that in the condition
#TV, the stop will be either fully aspirated (if followed by a
stressed vowel) or unaspirated (if followed by an unstressed
vowel). Violin plots in Figure 3 illustrate that aspiration of stops
before an unstressed vowel can be as short as in the #sTV
condition. In the #sTV condition, the stop is never aspirated.
Learning of two conditions is more complex if the dependent
variable in one condition can range across the variable in the
other condition.

The training data is not completely naturalistic: #TV and
#sTV sequences are sliced from continuous speech data. This,
however, has a desirable effect. The primary purpose of this
paper is to test whether a GAN model can learn an allophonic
distribution from data that consists of raw acoustic inputs.
If the entire lexicon was included in the training data, the
distribution of VOT duration could be conditioned on some
other distribution, not the one this paper is predominately
interested in: the presence or absence of [s]. It is thus less
likely that the distribution of VOT duration across the main
condition of interest, the presence of [s], is conditioned on some

other unwanted factor in the model precisely because of the
balanced design of the training data. The only condition that
can potentially influence learning is the distribution of vowels
across the two conditions. Figure 4, however, shows that vowels
are relatively equally distributed across the two conditions, which
means that vowel identity likely does not influence the outcomes
substantially. Finally, vowel duration (or the equivalent of speech
rate in real data) and identity are not controlled for in the present
experiment. To control for vowel duration, VOT duration would
have to be modeled as a proportion of the following vowel
duration. Several confounds that are not easy to address would
be introduced, the main of which is that vowel identification
is problematic for generated inputs with fewer training steps.
Because the primary interest of the experiment is the difference
in VOT durations between two groups (the presence and absence
of [s]) and substantial differences in vowel durations (or speech
rate) between the two groups are not expected, we do not
anticipate the results to be substantially influenced by speech rate.

4. EXPERIMENT

4.1. Training and Generation
The purpose of this paper is to model phonetic and phonological
learning. For this reason, the data was generated and examined
at different points as the Generator network was in the process
of being trained. For the purpose of modeling learning, it is
more informative to probe the networks with fewer training
steps, which allows a comparison between the model’s outputs
and L1 acquisition (Section 5.1). Outputs of the network are
analyzed after 12,255 steps (Section 4.2). The number of steps
was chosen as a compromise between quality of output data and
the number of epochs in the training. Establishing the number
of training steps at which an effective acoustic analysis can be
performed is at this point somewhat arbitrary. We generated
outputs of the Generator model trained after 1,474, 4,075, 6,759,
9,367, and 12,255 steps and manually inspected them. The model
trained after 12,255 steps was considered the first that allowed
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FIGURE 3 | (A) Violin plots with box-plots of durations in ms of VOT in the training data based on two conditions: when word-initial #TV sequence is not preceded by

[s] (#TV) and when it is preceded by [s] (#sTV) across the three places of articulation: [p], [t], [k]. (B) Fitted values of VOT durations with 95% confidence intervals from

the Gamma (with log-link) regression model in Table S1 in Supplementary Materials.

FIGURE 4 | Distribution of training items according to vowel identity as described in TIMIT in ARPABET, where aa = A, ae = æ, ah = 2, ao = O, aw = aU, ax = @, ax-h =

@
˚
, axr = Ä, ay = aI, eh = E, er = Ç, ey = eI, ih = I, ix = 1, iy = i, ow = oU, oy = oI, uh = U, uw = u, ux = 0 in the International Phonetic Alphabet.

a reliable acoustic analysis based on quality of the generated
outputs. It would be informative to test how accuracy of labeled
data improves with training steps, but this is left for future work.
The model was trained on a single NVIDIA K80 GPU. The
network was trained at an approximate pace of 40 steps per 300
s. In Section 4.2, we present measurements of VOT durations
in the #sTV and #TV conditions in the generated outputs and
discuss linguistically interpretable innovative outputs that violate
the training data. In Section 4.3.1, we propose a technique for
recovering the Generator network’s internal representations; in
Section 4.4 we illustrate that manipulating these variables has a
phonetically meaningful effect in the output data.

4.2. VOT Duration
The Generator network after 12,255 steps (∼ 716 epochs)
generates acoustic data that appear close to actual speech data.
Figure 5 illustrates a typical generated sample of #TV (left)

and #sTV (right) structures with a substantial difference in
VOT durations.

To test whether the Generator learns the conditional
distribution of VOT duration, 2,000 samples were generated and
manually inspected. First, VOT duration wasmanually annotated
in all #sTV sequences. There were altogether 156 such sequences.
To perform significance testing on a similar sample size, the
first 158 sequences of the #TV structure were also annotated
for VOT duration. VOT was measured from the release of
closure to the onset of periodic vibration with clear formant
structure. Altogether 314 generated samples were thus annotated.
Only samples with structure that resembles real acoustic outputs
and for which VOT could be determined were annotated. The
proportion of inputs for which a clear #sTV or #TV sequence
was not recognizable is relatively small: in only 8 of the first
175 annotated outputs (4.6%) was it not possible to estimate the
VOT duration or whether the sequence is of the #TV or #sTV
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FIGURE 5 | Waveforms and spectrograms (0–8,000 Hz) of typical generated samples of #TV (left) and #sTV (right) sequences from a Generator trained after 12,255

steps.

FIGURE 6 | (A) Violin plots with box-plots of durations in ms of VOT in the generated data based on two conditions: when word-initial #TV sequence is not preceded

by [s] (#TV) and when it is preceded by [s] (#sTV). (B) Estimates of VOT duration based on fitted values with 95% confidence intervals across two conditions, #TV and

#sTV in the generated data. (C) Duration (in ms) of VOT in the #sTV condition that compares the TIMIT training data (red circles) and generated outputs (green

squares). The dashed line represents the longest VOT duration in the training data. The figure illustrates the proportion of outputs that violate the training data.

structure. Figure 6 shows the raw distribution of VOT durations
in the generated samples that closely resembles the distribution
in the training data (Figure 3).

The results suggest that the network does learn the allophonic
distribution: VOT duration is significantly shorter in the #sTV
condition (β = −2.79, t = −78.34, p < 0.0001; for details of
the statistical model, see Section 2, Supplementary Materials).
Figure 6 illustrates estimates of VOT duration across the two
conditions with 95% confidence intervals. The model, however,
shows clear traces that the learning is imperfect and that the
generator network fails to learn the distribution categorically.
This is strongly suggested by the fact that VOT durations are
substantially longer in the generated data compared to the
training data. The difference in means between the #TV and

#sTV conditions in the training data is 32.35 ms, while in the
generated data the difference is 22.52 ms. The ratio between the
two conditions in the training data is 2.34, while the generated
data’s ratio is 1.59.

Another aspect of generated data that also strongly suggests
the learning is imperfect is the fact that the longest VOT
durations in the #sTV condition in the generated data are
substantially longer than the longest VOT durations in the
training data, where the longest duration reaches 65 ms (see
Table 1 and Figure 3). VOT in the generated data is in 19 out
of 156 total #sTV sequences (or 12.2%) longer than 65.5 ms,
the longest VOT in the training data. The longest three VOT
durations in #sTV sequences are, for example, 109.35, 84.17, and
82.37 ms.
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TABLE 1 | Raw VOT durations in ms for the training data with SD and Range.

Structure Place VOT SD Lowest Highest Count

#TV p 49.6 18.0 7.3 115.5 1,018

t 55.2 20.7 9.8 130.0 1,799

k 67.5 19.5 12.5 153.1 2,112

#sTV p 19.4 7.1 9.4 49.2 115

t 25.6 7.9 10.6 65.0 288

k 30.1 8.6 14.4 55.0 130

This generalization holds also in proportional terms. To
control for the overall duration of segments in the output, we
measure ratio of VOT duration and duration of the preceding [s]
(i.e., thus controlling for “speech rate”). The highest ratio between
the VOT duration and the duration of preceding [s] (VOT[s] ) in

the training data is 0.773, which appears in an acoustically very
different token compared to the generated outputs. The ratio in
all other tokens in the training data are even lower, below 0.69.
Several values of the ratios between VOT and [s] duration in the
generated data are substantially higher compared to the training
data. In the three outputs with longest absolute duration of VOT,
the ratios are 1.91, 1.40, and 0.89. Other high ratios measured
include, for example, 1.79, 1.72, 1.60, 1.50, 1.46. Figure 7 shows
two such cases. It is clear that the generator fails to reproduce
the conditioned durational distribution from the training data
in these particular cases. In other words, while the Generator
learns to output significantly shorter VOT durations when [s] is
present in the output, it occasionally (in approximately 12.2% of
cases) fails to observe this generalization and outputs a long VOT
in the #sTV condition which is longer than any VOT duration
in the #sTV condition in the training data. As will be argued
in Section 5.1, the outcomes of this imperfect learning closely
resemble L1 acquisition.

Longer VOT duration in the #sTV condition in the generated
data compared to training data is not the only violation of the
training data that the Generator outputs and that resembles
linguistic behavior in humans. Among approximately 3,000
generated samples analyzed, we observe generated outputs that
feature only frication noise of [s] and periodic vibration of the
following vowel, but lack stop elements completely (e.g., closure
and release of the stop). In other words, the generator
occasionally outputs a linguistically valid and innovative #sV
sequence for which no evidence was available in the training data.
Such innovative sequences in which the segments are omitted
or inserted are rare compared to innovative outputs with longer
VOT—approximately two per 3,000 inspected cases (but the
overall rate of outputs that are acoustically difficult to analyze is
also small: 4.6%). All sequences containing [s] from the training
data were manually inspected by the author and none of them
contain a #sV sequence without a period of closure and VOT.

3The TIMIT annotations would yield a ratio of 1.17, but the token was annotated

by the author and the ratio appears much smaller. In any case, even with TIMIT’s

annotation, the ratio with value of 1.91 in the generated data is still substantially

higher than the 1.17.

The minimal duration of closure in #sTV sequences in the
training data is 9.2 ms, and the minimal duration of VOT is
9.4 ms. Aspiration noise in stops that resembles frication of [s]
and homorganic sequences of [s] followed by an alveolar stop
[t] (#stV) are occasionally acoustically similar to the sequence
without the stop (#sV) due to similar articulatory positions or
because frication noise from [s] carries onto the homorganic
alveolar closure which can be very short. Such data points in the
training data can serve as the basis for the innovative output #sV.
However, there is a clear fall and a second rise of noise amplitude
after the release of the stop in #stV sequences. Figure 8 shows
two cases of the Generator network outputting an innovative #sV
sequence without any stop-like fall of the amplitude, for which
no direct evidence exists in the training data.

Similarly, the Generator occasionally outputs a sequence with
two stops and a vowel (#TTV). One potential source of such
innovative sequences might be residual noise that is sometimes
present during the period of closure in the TIMIT database.
However, residual noise in the training data differs substantially
from a clear aspiration noise in the generated #TTV sequences.
Figure 9 illustrates two generated examples in which the vocalic
period is preceded by two bursts, two periods of aspiration
and a short period of silence between the aspiration noise of
the first consonant and the burst of the second consonant
that corresponds to closure of the second stop4. Spectrograms
show the distribution of energy differs across the two bursts
and aspiration noises, suggesting that the output represents a
heterogranic cluster [pt] followed by a vowel.

Measuring overfitting is a substantial problem for Generative
Adversarial Networks with no consensus on themost appropriate
quantitative approach to the problem (Goodfellow et al., 2014;
Radford et al., 2015). The risk with overfitting in a GAN
architecture is that the Generator network would learn to fully
replicate the input5. The best evidence against overfitting is
precisely the fact that the Generator network outputs samples
that substantially violate data distributions (Figures 7–9)6.

4.3. Establishing Internal Representations
Establishing what and how neural networks learn is a challenging
task (Lillicrap and Kording, 2019). Exploration of latent space
in the GAN architecture has been performed before (Radford
et al., 2015; Donahue et al., 2017; Lipton and Tripathi, 2017),
but to the author’s knowledge, most previous work did not focus
on discovering meaningful values (phonetic correlates) of each
variable and has not fully used the potential to extend those
variables to values well outside the training range (15 or 25).
Below, we propose a technique for uncovering dependencies

4For evidence that units smaller than segments are phonologically relevant, see

Inkelas and Shih (2017) and literature therein.
5In general, GANs do not overfit (Adlam et al., 2019; Donahue et al., 2019), as is

suggested by our data. Even if overfitting did occur, it would result from training

a Generator without a direct access to the training data (unlike in the autoencoder

models, where the input training data and outputs are directly connected).
6Donahue et al. (2019) test overfitting onmodels trained with a substantially higher

number of steps (200,000) compared to our model (12,255) and presents evidence

that GAN models trained on audio data do not overfit even with substantially

higher number of training steps.
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FIGURE 7 | Waveforms and spectrograms (0–8,000 Hz) of two generated outputs of #sTV sequences in which the stop has longer VOT than any VOT in #sTV

condition in the training data.

FIGURE 8 | Waveforms and spectrograms (0–8,000 Hz) of two generated outputs of the shape #sV. The sample on the left was generated after 16,715 steps.

FIGURE 9 | Waveforms and spectrograms (0–8,000 Hz) of two generated outputs of the shape #TTV.

between the network’s latent space and generated data based on
logistic regression. We first use regression estimates to identify
variables with a desired effect on the output by correlating the
outputs of the Generator with its corresponding input variables
that are uniformly distributed with an interval (−1, 1) during
training. We then Generate outputs by setting the identified
latent variables to values well beyond the training range (to 4.5,

15, or 25). This method has the potential to reveal the underlying
values of latent variables and shed light on the network’s internal
representations. Using the proposed technique, we can estimate
how the network learns to map from latent space to phonetically
and phonologically meaningful units in the generated data.

To identify dependencies between the latent space and
generated data, we correlate annotations of the output data with
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the variables in the latent space (in Section 4.3.1). As a starting
point, we choose to identify correlates of the most prominent
feature in the training data: the presence or absence of [s]. Any
number of other phonetic features can be correlated with this
approach (for future directions, see Section 6); applying this
technique to other features and other alternations should yield
a better understanding of the network’s learning mechanisms.
Focusing on more than the chosen feature, however, is beyond
the scope of this paper.

4.3.1. Regression
First, 3,800 outputs from the Generator network were generated
and manually annotated for the presence or absence of [s]. 271
outputs (7.13%) were annotated as involving a segment [s] which
is similar to the percentage of data points with [s] in the training
data (9.8%). Frication that resembled [s]-like aspiration noise
after the alveolar stop and before high vowels was not annotated
as including [s]7. Innovative outputs such as an #[s] without the
following vowel or #sV sequences were annotated as including
an [s].

The annotated data together with values of latent variables
for each generated sample (z) were fit to a logistic regression
generalized additive model (using themgcv package; Wood, 2011
in R Core Team, 2018) with the presence or absence of [s] as
the dependent variable (binomial distribution of successes and
failures) and smooth terms of latent variables (z) as predictors
of interest (estimated as penalized thin plate regression splines;
Wood, 2011). Generalized additive models were chosen in order
to avoid assumptions of linearity: it is possible that latent
variables are not linearly correlated with features of interest in the
output of the Generator network. The initial full model (FULL)
includes smooths for all 100 variables in the latent space that are
uniformly distributed within the interval (−1, 1) as predictors.

The models explored here do not serve for hypothesis testing,
but for exploratory purposes: to identify variables, the effects
of which are tested with two independent generative tests (see
Sections 4.3.2 and 4.3.3). For this reason, several strategies to
reduce the number of variables in the model with different
shrinkage techniques are explored and compared: the latent
variables for further analysis are then chosen based on combined
results of different exploratory models.

First, we refit the model with modified smoothing penalty
(MODIFIED), which allows shrinkage of the whole term (Wood,
2011). Second, we refit the model with original smoothing
penalty (SELECT), but with an additional penalty for each term if
all smoothing parameters tend to infinity (Wood, 2011). Finally,
we identify non-significant terms by Wald test for each term
(using anova.gam() with α = 0.05) and manually remove them
from the model (EXCLUDED). 38 predictors are thus removed.

The estimated smooths appear mostly linear (Figure 11). We
also fit the data to a linear logistic regression model (LINEAR)
with all 100 predictors. To reduce the number of predictors,
another model is fit (LINEAR EXCLUDED) with those predictors

7It is possible that some outputs were mislabeled, but the probability is low and

the magnitude of mislabeled data would be minimal enough not to influence the

results. The author manually inspected spectrograms of all generated data.

TABLE 2 | AIC values of five fitted models with corresponding degrees of freedom

(df), fitted with Maximum Likelihood.

df AIC

Full 108.94 1018.38

Modified 88.06 1031.03

Excluded 71.51 1008.20

Linear 101.00 1036.04

Linear excluded 78.00 1007.06

AIC of Select is not listed because it was not fitted with ML; AIC of Select fitted with REML

is, however, similar to Excluded (=1,008.46 vs. 1008.54).

removed that do not improve fit (based on the AIC criterion
when each predictor is removed from the full model). 23
predictors are thus removed. The advantage of the linear model
is that predictors are parametrically estimated8.

While the number of predictors in the models is high even
after shrinkage or exclusion, there is little multicollinearity in
the data as the 100 variables are randomly sampled for each
generation. The highest Variance Inflation Factor in the linear
logistic regression models (LINEAR and LINEAR EXCLUDED)
estimated with the vif() function (in the car package; Fox and
Weisberg, 2019) is 1.287. All concurvity estimates in the non-
linear models are below 0.3 (using concurvity() in Wood, 2011).
While the number of successes per predictor is relatively low,
it is unlikely that more data would yield substantially different
results (as will be shown in Sections 4.3.2 and 4.3.3, the model
successfully identifies those values that have direct phonetic
correlates in the generated data).

Six models are thus fit in an exploratory method to identify
variables in the latent space that predict the presence of [s]
in generated outputs. Table 2 lists AIC for each model. The
LINEAREXCLUDED model has the lowest AIC score. All six
models, however, yield similar results. For further tests based
on Lasso regression and Random Forest models that also yield
similar results, see Section 3 (Supplementary Materials).

To identify the latent variables with the highest correlation
with [s] in the output, we extract χ2 estimates for each term from
the generalized additive models and estimates of slopes (β) from
the linear model. Figure 10 plots those values in a descending
order. The plot points to a substantial difference between the
highest seven predictors and the rest of the latent space. Seven
latent variables are thus identified (z5, z11, z49, z29, z74, z26, z14)
as potentially having the largest effect on the presence or absence
of [s] in output. Figure 11 plots smooths of the seven predictors
(z5, z11, z49, z29, z74, z26, z14) from a non-linear model SELECT.
The smooths show a linear or near-linear relationship between
values of the chosen seven variables and the probability of [s] in
the output.

Several methods for finding the features that predict the
presence or absence of [s] are thus used. Logistic regression is
presented here because it is the simplest and easiest to interpret.

8It would be possible to estimate smooth terms for only a subset of predictors, but

such a model is unlikely to yield different results.
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FIGURE 10 | Plot of χ2 values (left scale) for the 100 predictors across the four generalized additive models. For the two linear models (LINEAR and LINEAR EXCLUDED),

estimates of slopes in absolute values (|β|) are plotted (right scale). The blue vertical line indicates the division between the seven chosen predictors and the rest of the

predictor space with a clear drop in estimates between the first seven values (z5, z11, z49, z29, z74, z26, z14) and the rest of the space.

FIGURE 11 | Plots of seven smooth terms with highest χ2 values in a generalized additive logistic regression model with all 100 latent variables (z) as predictors,

estimated with penalty for each term (SELECT). Many of the predictors show linear correlation, which is why a linear logistic regression outputs similar estimates.

In future work, a combination of techniques is recommended
to be used for exploratory purposes in a similar way as
proposed in this paper. Below, we conduct two independent
generative tests to evaluate whether the proposed technique
indeed identifies variables that correspond to presence of [s] in
the output.

4.3.2. Generative Test 1
To conduct an independent generative test of whether the chosen
values correlate with [s] in the output data of the Generator
network, we set values of the seven identified predictors (z5, z11,
z49, z29, z74, z26, z14) to the marginal value of 1 or−1 (depending
on whether the correlation is positive or negative; see Figure 11)
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FIGURE 12 | Seven waveforms and spectrograms (0–8,000 Hz) of outputs

from the Generator network with the value of z11 set at −25. In 96 out of 100

generated samples, the network outputs a sequence containing an [s]. With

such a low value of z11 (that correlates with amplitude of frication noise), the

amplitude of the frication noise reaches the maximum level of 1 in all outputs

with [s].

and generated 100 outputs. Altogether seven values in the latent
space were thus manipulated, which represents only 7% (7/100)
of all latent variables. Of the 100 outputs withmanipulated values,
73 outputs included an [s] or [s]-like element, either with the
stop closure and vowel or without them. The rate of outputs that
contain [s] is thus significantly higher when the seven values are
manipulated to themarginal levels compared to randomly chosen
latent space. In the output data without manipulated values, only
271 out of 3,800 generated outputs (or 7.13%) contained an [s].
The difference is significant [χ2

(1)
= 559.0, p < 0.00001].

High proportions of [s] in the output can be achieved with
manipulation of single latent variables, but the values need to
be highly marginal, i.e., extend well beyond the training space.
Setting the z11 value outside the training interval to −15, for
example, causes the Generator to output [s] in 87 out of 100
generated (87%) sequences, which is again significantly more
than with randomly distributed input latent variables [χ2

(1)
=

792.7, p < 0.0001]. When z11 is −25, the rate goes up to 96 out
of 100, also significantly different from random inputs [χ2

(1)
=

959.8, p < 0.0001].

4.3.3. Generative Test 2
To further confirm that the regression models identify the
variables involved with the presence of [s] in generated outputs,
another generative experiment was conducted. In addition to
manipulating the seven identified variables, we test the effect of
other variables in the latent space on the presence of [s] in the
output. If the regression estimates provide reliable information,
the variables with higher estimates should have more of an effect
on the presence of [s] in the output and vice versa. Testing the
entire latent space would be too expensive, which is why we
limit our tests to 25 variables with highest estimates from the
regression models (which includes the seven chosen variables)
and six additional variables with descending regression estimates.
Altogether 31/100 variables or 31% of the latent variables are
thus analyzed. The variables were chosen in the following way:

first, we manipulate values of the first 25 variables with the
highest estimates based on regression models in Figure 10 (7
chosen variables plus additional 18 variables for a total of 25).
Because we want to test the effects of the latent variables as
evenly as possible and also to test the effects of variables with
the lowest regression estimates, we picked 6 additional variables
that are distanced from the 25th highest variable in increments
of 5 (random choice of variables might miss the variables with
lowest estimates).

To perform the generative test of the correlation between the
latent space and the proportion of [s] in the output, we set each
of the 31 variables at a time to a marginal level well beyond
the training interval (to ±4.5), while keeping the rest of the
latent space randomly sampled, but constant. In other words,
all variables are sampled randomly and held constant across all
samples, with the exception of the variable in question at a time
that is set to ±4.5. The ±4.5 value was chosen based on manual
inspection of generated samples: as is clear from Figure 15,
changes in amplitude of [s] become increasingly smaller when
variables have a value greater than ±3.5. For effects of values
beyond 4.5, see Figure 12.

One hundred outputs are generated for each of the 31
manipulated latent variables. Altogether 31×100 (3,100) outputs
were thus analyzed and annotated for the presence or absence
of [s] in the output. For example, when the effect of latent
variable z11 on the proportion of [s] in the output is tested, we
set its value to −4.5 while keeping other variables random. One-
hundred samples are generated in which the other 99 variables
are randomly distributed with the exception of the z11 variable
(which is set at the marginal level). Samples are annotated for
the presence or absence of [s] and the proportion of [s] in the
output is calculated from the number of samples with [s] divided
by the number of all samples. The same procedure is applied to
the other 30 variables examined. To control for the unwanted
effects of the latent space on the output, all 99 other variables
with the exception of the one manipulated are kept constant
across all 31 samples. The 31 data points of this proportion are
thus the dependent variable in regressionmodels (Figure 13) that
test the correlation between the identified variables and [s] in
the output.

A beta regression model with the proportion of [s] as the
dependent variable and with estimates of the Linear model as
the independent variable suggests that there exists a significant
linear correlation between the estimates of the regression model
and the actual proportion of generated outputs with [s]: β =

1.44, z = 5.07, p < 0.0001 (for details on model selection,
see Section 4, Supplementary Materials). In other words, the
technique for identifying latent variables that correlate with
the presence of [s] in the output based on regression models
(in Figure 10) successfully identifies such variables. This is
confirmed independently: the proportion of generated outputs
containing an [s] correlates significantly with its estimates from
the regression models.

4.3.4. Interpretation
The regression models in Figure 10 identify those z-variables in
the latent space that have the largest effect on the presence of
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FIGURE 13 | Plot of absolute values of estimates from the Linear model for 31

analyzed latent variables z (numbered on the plot) and the percent of outputs

that contain an [s] based on 100 generated samples. The blue solid line

represents predicted values based on the beta regression model with

estimates of the Linear model as the predictor; the dashed lines represent

95% confidence intervals.

[s] in the output. Figure 13 confirms that the generator outputs
significantly higher proportions of [s] for some variables, while
other variables have no effect on the presence of [s]. In other
words, variables with lower regression estimates do not affect
the proportion of [s] in the output. The proportion of [s] in the
output when variables such as z90, z9, z4, z7 are manipulated is
very close to the 7.13% of [s] in the output when all z-variables
in the latent space are random. It thus appears that the Generator
uses portions of the latent space to encode the presence of [s] in
the output.

Some latent variables cause a high proportion of [s] in the
output despite the regressionmodel estimating their contribution
lower than the seven identified latent variables (Figure 13) and
vice versa. Outputs for variable z14 contain frication noise that
falls between [s] and [s]-like aspiration, which were difficult to
classify (also, the target for [s]-like outputs in this variable is
closer to 2.5). The two variables with the highest proportion of
[s] in the output that are estimated substantially lower than the
seven variables are z41 and z98. There is a clear explanation for
the discrepancy of the regression estimates and the rates of [s]-
outputs for such variables. While outputs at the marginal values
of the two variables (at±4.5) do indeed contain a high proportion
of [s]-outputs, the frication noise ceases during the (−1, 1)
interval on which the model is trained. Because the regression
model only sees the training interval (−1, 1) (annotations fed to
the regression models are performed on this interval) and does
not access outputs with variables outside of this interval, the
estimates are consequently lower than the outputs at themarginal
levels for these variables. There are only a handful of such
variables, and since we are primarily interested in those variables
that correspond to [s] both within the training interval and
outside of it, we focus our analysis below on the seven variables
identified in Section 4.4. The problem with variables in which
[s]-outputs are present predominantly outside of the training

interval is the possibility that the [s]-output in these types of cases
is secondary/conditioned on some other distribution, because it
was likely not encoded in the training stage.

While there is a consistent drop in estimates of the regression
models after the seven identified variables (Figure 10) and while
several independent generation tests confirm that the seven
variables have the strongest effect on the presence of [s] in the
output, the cutoff point between the seven variables and the rest
of the latent space is still somewhat arbitrary. It is likely that other
latent variables directly or indirectly influence the presence of
[s] as well: the learning at this point is not yet categorical and
several dependencies not discovered here likely affect the results.
Nevertheless, further explorations of the latent space suggest
the variables identified with the logistic regression (and other)
models (Figure 10) are indeed the main variables involved with
the presence or absence of [s] in the output.

Additionally, if at the value of z that so substantially exceeds
the training interval (±4.5) the latent variable does not influence
the outcomes substantially and only marginally increases the
proportion of [s]-outputs, as is the case for the majority of the
latent variables outside of the seven chosen ones, it is likely that
its correlation with [s] in the output is secondary and that the
variable does not contribute crucially to the presence of [s].

4.4. Interpolation and Phonetic Features
Fitting the annotated data and corresponding latent variables
from the Generator network to generalized additive and linear
logistic regression models identifies values in the latent space
that correspond to the presence of [s] in the output. As will be
shown below, this is not where exploration of the Generator’s
internal representations should end. We explore whether the
mapping between the uniformly distributed input z-variables
and the Generator’s output signal that resembles speech can be
associated with specific phonetic features in that output. The
crucial step in this direction is to explore values of the latent space
and their phonetic correlates in the output beyond the training
interval, i.e., beyond (−1, 1). We observe that the Generator
network, while being trained on latent space limited to the
interval (−1, 1), learns representations that extend this interval.
Even if the input latent variables (z) exceed the training interval,
the Generator network outputs samples that closely resemble
human speech. Furthermore, the dependencies learned during
training extend outside of the (−1, 1) interval. As is argued
in Section 4.5, exploring phonetic properties at these marginal
values has the potential to reveal the actual underlying function
of each latent variable.

To explore phonetic correlates of the seven latent variables, we
set each of the seven variables separately to the marginal value
−4.5 and interpolate to its opposite marginal value 4.5 in 0.5
increments, while keeping randomly-sampled values of the other
99 latent variables z constant. Again, the ±4.5 value was chosen
based on manual inspection of generated samples: amplitude
of [s] ceases to change substantially past values around ±3.5
(Figure 15). Seven sets of generated samples are thus created,
one for each of the seven z values: z5, z11, z14, z26, z29, z49, and z74
(with the other 99 z-values randomly sampled, but kept constant
for all seven manipulated variables). Each set contains a subset
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FIGURE 14 | Waveforms and two spectrograms (both 0− 8, 000 Hz) of generated data with z11 variable manipulated and interpolated. The values on the left of

waveforms indicate the value of z11. The two spectrograms represent the highest and the lowest value of z11. A clear attenuation of the frication noise is visible until

complete disappearance.

of 19 generated outputs that correspond to the interpolated
variables from −4.5 to 4.5 in 0.5 increments. Twenty-nine such
sets that contained an [s] in at least one set are extracted for
analysis (sets that lack an [s] were not analyzed).

A clear pattern emerges in the generated data: the latent
variables identified as corresponding to the presence of [s] via
regression (Figure 10) have direct phonetic correlates and cause
changes in amplitude and the presence/absence of frication
noise of [s] when each of the seven values in the latent space
are manipulated to the chosen values, including values that
exceed the training interval. In other words, by manipulating the
identified latent variables, we control the presence/absence of [s]
in the output as well as the amplitude of its frication noise.

Figure 14 illustrates this effect. Frication noise of [s] gradually
decreases by increasing the value of z11 until it completely
disappears from the output. The exact value of z11 for which the
[s] disappears differs across examples and likely interacts with
other features. It is possible that frication noise in the training
has a higher amplitude in some conditions, which is why such
cases require a higher magnitude of manipulation of z11. The
figure also shows that as the frication noise of [s] disappears,
aspiration of a stop in what appear to be #TV sequences starts
surfacing and replaces the frication noise of [s]. Occasionally,
frication noise of [s] gradually transforms into aspiration noise.
The exact transformation is likely dependent on the 99 other
z-variables held constant and their underlying phonetic effects.
Regardless of these underlying phonetic effects, manipulating the
chosen variables has a clear effect of causing [s] to appear in the
output and controlling its amplitude.

To test the significance of the effects of the seven identified
features on the presence of [s] and the amplitude of its frication

noise, the 29 generated sets of 19 outputs (with z-value from
−4.5 to 4.5) for each of the seven variables were analyzed. The
outputs were manually annotated for [s] and the following vowel.
Outputs gradually change from #sTV to #TV. Only sequences
containing an [s] were analyzed; as soon as [s] stops in the
output, annotations were stopped and the outputs were not
further analyzed. Altogether 161 trajectories were thus annotated;
the total number of data points measured is 1,088 because each
trajectory contains a number ofmeasurements of the interpolated
values of z. For each datapoint, maximum intensity of the
fricative and maximum intensity of the vowel were extracted
in Praat (Boersma and Weenink, 2015) with a 13.3 ms window
length (with parabolic interpolation)9. Figure 15 illustrates how
manipulating the values of z of the chosen variables from the
marginal value ±4.5 decreases frication noise in the output until
[s] is completely absent.

To test whether the decreased frication noise is not part of a
general effect of decreased amplitude, we perform significance
tests on the ratio of maximum intensity between the frication
noise of [s] and the following vowel in the #sTV sequences.
Figure 16 plots the ratio of maximum intensity of the fricative
divided by the sum of two maximum intensities: of the fricative
([s]) and of the vowel (V). The manipulated z-values are
additionally normalized to the interval [0,1], where 0 represents
the most marginal value with [s] (usually ±4.5; referred to as
STRONG henceforth) and 1 represents the last value before [s]
disappears (WEAK). Note that the point at which [s] is not present
in the output anymore, but the vowel still surfaces (which would
yield the ratio at 0) is not included in the model.

9The script used for this task was provided by Lennes (2003).
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FIGURE 15 | Plots of maximum intensity (in dB) of the fricative part in #sTV sequences when values of the seven z-variables are interpolated from the marginal values

±4.5 in 0.5 increments. Each set of generated samples with the randomly sampled latent variables held constant is colored with the same color across the seven

z-variables. Values of z5, z14, and z26 are inverted for clarity purposes.

The data were fit to a beta regression generalized additive
mixed model (in the mgcv package; Wood, 2011) with the
ratio as the dependent variable, the seven chosen variables as
the parametric term, thin-plate smooths for each variable and
random smooths (with first order of penalty; Baayen et al., 2016;
Sóskuthy, 2017) for (i) trajectory and for (ii) value of other
variables in the latent space of the Generator network. Figure 16
plots the normalized trajectories of the ratio and predicted values
based on the generalized additive model. All smooths (except
for z74) are significantly different from 0 (all coefficients in
Table S3, Supplementary Materials) and the plots show a clear
negative trajectory. In other words, maximum intensity of [s] is
increasingly attenuated compared to the intensity of the vowel
as z approaches the opposite value from the one identified as
predicting the presence of [s] until it completely disappears from
the output.

The seven variables thus strongly correspond to the presence
or absence of [s] in the output; by manipulating the chosen
variables to the identified values we can attenuate frication noise
of [s] and cause its presence or complete disappearance in the
generated data. Again, the discovery of these features is possible
because we extend the initial training interval and test predictions
on marginal values. In Section 4.5, we analyze further phonetic
correlates of each of the seven variables.

4.5. Phonetic Values of Latent Variables
Interpolation of latent variables reveals that the presence of [s]
is not controlled by a single latent variable, but by at least seven
of them. Additionally, there appears to be no categorical cut-off
point in the magnitude of the effect between the variables, only
a steep drop of regression estimates (Figure 10) and a decline of
outputs with [s] in generated data (Figure 13). This suggests that
the learning at this stage is gradient and probabilistic rather than
fully categorical.

The different latent variables that correspond to the presence
of [s], however, are not phonetically vacuous: individually, they
have distinct phonetic correspondences. The generated samples
reveal that the variables’ secondary effect (besides outputting [s]
and controlling its intensity) are likely spectral properties of the
frication noise. The seven variables are thus similar in the sense
that manipulation of their values results in the presence of [s] by
controlling its frication noise. They crucially differ, however, in
the effects on the spectral properties of the outputs.

To test this prediction, spectral properties of the output
fricatives are analyzed. The same 29 sets of generated samples
are used in the analysis; one z-value is manipulated in each set
while other variables are sampled randomly and held constant.
The marginal values of the variables were chosen for this test: the
values with the strongest presence of [s] (which in most cases is
±4.5; henceforth STRONG) and the value before which [s] ceases
from the output (henceforth WEAK). Center of gravity (COG),
kurtosis, and skew of the frication noise were analyzed with and
extracted with a script from Rentz (2017) in Praat (Boersma and
Weenink, 2015). Period of frication is sliced into 10% intervals.
The data includes 161 trajectories (from the 29 generated sets)
and 161 × 10 = 1, 610 unique data points. COG, kurtosis,
and skew based on power spectra are measured in each of these
1,610 intervals with 750–8,000 Hz Hann band pass filter (100
Hz smoothing). Results were fit to six generalized additive mixed
models with COG, kurtosis, and skew as the dependent variables
(3 for each of the levels STRONG and WEAK). The parametric
terms included the seven latent variables z. The smoothing terms
included smooths for latent variable z11 and difference smooths
for the other six variables z. The model also includes random
smooths for each fricative (from 10 to 100% with 10 knots) and
for each of the 29 generated sets with equal random values of
other 99 z-variables (with 7 knots; random smooths are fitted
with first order of penalty, see Baayen et al., 2016; Sóskuthy,
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FIGURE 16 | (A) Plots of ratios of maximum intensity between the frication of [s] and phonation of the vowel in #sTV sequences across the seven variables. The

interpolated values are normalized where 0 represents the most marginal value of z with [s] in the output and 1 represents the value of z right before [s] ceases from

the output. Four marginal values are left out from the plot (but are included in the models). Each set of generated samples with the randomly sampled latent variables

held constant is colored with the same color across the seven z-variables. (B) Predicted values with 95% CIs of the ratio based on beta regression generalized

additive model (Table S3, Supplementary Materials) across the several variables with normalized values.

2017). The models were fit with correction for autocorrelation
with ρ-values ranging from 0.15 to 0.7.

Spectral properties of the generated fricatives are generally
not significantly different at the value of z right before [s]
disappears from the outputs (WEAK; left column in Figure 17).
As values of z increase toward the marginal levels (in most
cases, ±4.5), however, clear differentiation in spectral properties
emerge between some of the seven z-variables (STRONG; right
column in Figure 17). The trajectory for center of gravity, for
example, significantly differs between z11 and most of the other
six variables. Overall kurtosis is significantly different when z11 is
manipulated, compared to, for example, z26 and z29. Similarly,

while z74 does not significantly attenuate amplitude of [s], it
significantly differs in skew trajectory of [s]. The main function
of z74 is thus likely in its control of spectral properties of
frication of [s] (e.g., skew). For all coefficients and significant and
non-significant relationship of the six models, see Tables S4–S9,
Supplementary Materials.

In sum, manipulating the latent variables that correspond to
[s] in the output not only attenuates frication noise (when vocalic
amplitude is controlled for) and causes [s] to surface or disappear
from the output, but the different z-variables likely correspond
to different phonetic features of the frication noise. At the level
before the frication noise ceases from the output, there are no
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differences in spectral moments between the latent variables. By
setting the values to the marginal levels well beyond the training
interval, however, significant differences emerge both in overall
levels as well as in trajectories of COG, kurtosis, and skew. It is
thus likely that the variables collectively control the presence or
absence of [s], but that individually, they control various phonetic
features — spectral properties of the frication noise.

5. DISCUSSION

The Generator network trained after 12,255 steps learns to
generate outputs that closely resemble human speech in the
training data. The results of the experiment in Section 4.2 suggest
that the generated outputs from the Generator network replicate
the conditional distribution of VOT duration in the training data.
The Generator network thus not only learns to output signal that
resembles human speech from noise (input variables sampled
from a uniform distribution), but also learns to output shorter
VOT durations when [s] is present in the signal. While this
distribution is phonologically local, it is non-local in phonetic
terms as a period of closure necessarily intervenes between [s]
and VOT. It is likely, however, that minor local dependencies
(such as burst or vowel duration) also contribute to this
distribution. While it is currently not possible to disambiguate
between the local and non-local effects, it is desirable for a model
to capture all possible dependencies, as speech production and
perception often employ several cues as well.

5.1. Parallels in Human Behavior
Several similarities emerge between the training of the Generative
Adversarial networks and L1 acquisition. The training data in the
GANmodel is of course not completely naturalistic (even though
the inputs are raw audio recordings of speech data): the network
is trained on only a subset of sound sequences that a language
learning infant is exposed to. The purpose of these comparisons
is not to suggest the GAN model learns the data in exactly
the same manner as human infants, but to suggest that clear
similarities exist in behavior between the proposed model and
human behavior in speech acquisition. Such comparisons have
both the potential to inform computational models of human
cognition and conversely, shed light on the question of how
neural networks learn the data.

While the generated outputs contain evidence that the
network learns the conditional distribution of VOT duration,
a proportion of outputs violates this distribution. In fact, in
approximately 12.2% of the #sTV sequences, the Generator
outputs VOT durations that are longer than any VOT duration
in the #sTV condition in the training data. This suggests that
the model learns the conditional distribution, but that the
learning is imperfect and the Generator occasionally violates the
distribution. Crucially, these outputs that violate the training
data closely resemble human behavior in L1 acquisition. Infants
acquiring VOT in English undergo a period in which they
produce VOT durations substantially longer compared to the
adult input, not only categorically in all stops (Macken and
Barton, 1980; Catts and Jensen, 1983; Lowenstein and Nittrouer,
2008), but also in the position after the sibilant [s]. McLeod

et al. (1996) studied acquisition of #sTV and #TV sequences
in 2;0 to 2;11 year old children. Unlike the Generator network,
children often simplify the initial clusters from #sTV to a single
stop #TV. What is parallel to the outputs of the Generator,
however, is that the VOT duration of the simplified stop is
overall significantly shorter in underlying #sTV sequences, but
there exists a substantial period of variation and occasionally
the language-acquiring children output long-lag VOT durations
there (McLeod et al., 1996, for similar results in language-delayed
children, see Bond, 1981). Bond and Wilson (1980) present a
similar study, but include older children that do not simplify the
#sT cluster. This group behaves exactly parallel to the Generator’s
network: the overall duration of VOT in the #sTV sequences
is shorter compared to the #TV sequences, but the longest
duration of any VOT is attested once in the #sTV, not in the
#TV condition (Bond andWilson, 1980). The children thus learn
both to articulate the full #sT cluster and to output a shorter
VOT durations in the cluster condition. Occasionally, however,
they output a long-lag VOT in the #sTV condition that violates
the allophonic distribution and is longer than any VOT in the
#TV condition.

Further parallels exist between the Generator’s behavior and
L2 acquisition and speech errors. Studies on L2 acquisition
of VOT durations in #sTV and #TV sequences suggest that
learners start with a smaller distinction between the two groups
and acquire the non-aspiration rule after [s] only with more
exposure (Haraguchi, 2003). A smaller initial difference between
the two conditions in L2 acquisition, for example, increases
from Japanese learners of English with little exposure when
compared with learners with more exposure (Haraguchi, 2003).
Saudi Arabic L2 learners of English produce substantially longer
VOT durations in #sTV sequences compared to the native
inputs (Alanazi, 2018), which resembles imperfect learning
in the Generator’s network. Speech errors also provide a
parallel to the described behavior of the Generator network.
German has a similar process of aspiration distribution as
English. In an experiment of elicited speech errors, German
speakers produced aspirated stops with longer VOT durations
in erroneous sequences with inserted sibilant in 34% of cases
(Pouplier et al., 2014). This suggests that the allophonic rule fails
to apply in the speech errors, which is parallel to the Generator
network outputting a long VOT in the #sTV condition that
violate the training data distributions.

Finally, the Generator network violating the VOT distribution
resembles the behavior of patients with speech impairments.
Buchwald and Miozzo (2012) analyzed VOT durations of two
patients with apraxia of speech that present cluster production
errors, i.e., clusters of the structure #sTV are simplified to
#TV. One patient outputs long VOT durations in the #sTV
condition (after the cluster is simplified). VOT durations
in the #sTV clusters in this patient correspond to VOT
durations of singleton stops (#TV). The other patient also
simplifies the cluster, but outputs shorter VOT durations in
the #sTV condition, maintaining the underlying distribution.
It is hypothesized that the first patient (with long VOT
durations in the #sTV condition) shows signs of impairment
that operates on the phonological level: because phonological

Frontiers in Artificial Intelligence | www.frontiersin.org 18 July 2020 | Volume 3 | Article 44

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Beguš Generative Adversarial Phonology

computation is impaired, the patient fails to output shorter
VOT durations in the #sTV condition. In other words, there
are no motor planning mechanisms that would prevent the
patient from producing shorter VOT durations in the #sTV
condition, which is why the error is assumed to operate
on the phonological level — a phonological rule fails to
apply, which results in long VOT in the #sTV condition.
The second patient, on the other hand, is hypothesized to
shows traces of phonetic execution impairment, while the
phonological computation (short VOT in the #sTV condition)
is intact. The outputs of the Generator network that violate
the training data are parallel to the behavior of the patient
with assumed phonological impairment: in 12.2% of cases, the
network outputs long VOT duration in the #sTV condition
that is longer than any VOT duration in the same condition
in the training data. Since the network lacks any articulatory
component (see also discussion below), motor planning factors
cannot explain the Generator’s violations of the distributions in
the training data.

As indicated by examples in Figures 8, 9, the network also
generates segmentally innovative outputs for which no evidence
was available in the training data. A subset of the innovative
outputs, such as #sV and #TTV sequences, are consistent
with linguistic behavior in humans. The Generator’s innovative
outputs thus closely resemble one of the main properties of
human phonology: productivity. Human subjects are able to
evaluate and produce nonce-words even if a string of phonemes
violates language-specific phonotactics, as long as the basic
universal phonotactic requirements that treat phones as atomic
units are satisfied (for an overview of phonotactic judgments,
see Ernestus, 2011 and literature therein). Deleting or inserting
segments are also common patterns in both L1 acquisition
(Macken and Ferguson, 1981), loanword phonology (Yildiz,
2005), in children with speech disorders (Catts and Kamhi, 1984;
Barlow, 2001), as well as in speech errors (Alderete and Tupper,
2018b). For example, #sT clusters are often simplified in L1
acquisition (Gerlach, 2010). While the most common outcome
is deletion of [s] (which results in the #TV sequence), deletion of
the stop is robustly attested as well in L1 acquisition (resulting in
#sV), both in the general population and in children with speech
disorders (Catts and Kamhi, 1984; Ohala, 1999; Gerlach, 2010;
Syrika et al., 2011).While this deletion likely involves articulatory
factors that are lacking in our model, the fact that segmental units
can be deleted from the output and recombined in L1 acquisition
resembles the deletion in the Generator’s innovative outputs,
such as the #sV sequence.

These innovative outputs of the Generator’s network have
potential for contributing to our understanding of the evolution
of phonology in language evolution in general (for an overview
of the field, see Gibson et al., 2012). The main process that any
model of the evolution of phonology needs to explain is the
change from “holistic” acoustic signals in the proto-language to
the “combinatorial” principle that operates with discrete units—
phonemes and their combinations (Oudeyer, 2001, 2002, 2005,
2006; Zuidema and de Boer, 2009). The Generator network shows
traces of this behavior: in addition to learning to reproduce the

input, it learns to recombine segments into novel and unobserved
sequences. The exact details of modeling phonological evolution
with Generative Adversarial architecture is, however, beyond the
scope of the present paper.

5.2. Latent Variables as Correlates of
Features
In Section 4.3, we propose a technique for recovering internal
representations of the Generator network. The first crucial
observation is that the dependencies learned in the latent space
limited by some interval extend beyond that interval. This allows
for an in-depth analysis of phonetic effects of each latent variable
in the generated data. Regression models identify those variables
in the latent space that strongly correlate with the presence of
[s] in the output. Manipulating values of the identified latent
variables, both within the training interval and outside of it,
results in significantly higher rates of [s] in the output. By
interpolating values of individual latent variables outside of
the training interval, we explore the exact phonetic correlates
of each latent variable. The results suggest that the Generator
network learns to use latent variables to encode imperfect
equivalents of phonetic features. Since the features not only
correspond to phonetic properties, but to the categorical presence
or absence of [s] in the output, the network also uses latent
space to encode what would be an approximate equivalent of
phonological representations in the broadest sense—absence or
presence of a segment.

While the presence of [s] in the output is controlled by
multiple latent variables, each of the variables likely has an
underlying phonetic function. While there are no significant
differences in phonetic correlates of z-variables when their
value is at the last point before [s] ceases from the output,
a clear differentiation emerges when the values are set to the
marginal level (Figure 17). The seven variables thus likely have
a phonetic function: controlling various spectral properties of the
frication noise.

Features have long been in the center of phonetic and
phonological literature (Trubetzkoy, 1939; Chomsky and Halle,
1968; Clements, 1985; Dresher, 2015; Shain and Elsner, 2019).
Extracting features based on unsupervised learning of pre-
segmented phones with neural networks has recently seen success
in the autoencoder architecture (Räsänen et al., 2016; Eloff
et al., 2019; Shain and Elsner, 2019). Shain and Elsner (2019)
train an autoencoder with binary stochastic neurons on pre-
segmented speech data and argue that bits in the code of the
autoencoder network imperfectly correspond to phonological
features as posited by phonological theory. As was argued
in Section 4.3, our model shows traces of imperfect self-
organizing of phonetic features (e.g., spectral moments) and
phonological representations (e.g., the presence of [s]) in the
latent space, while learning allophonic distributions at the same
time. Considerable differences between the theoretically assumed
features and our results, of course, remain. Latent space encoding
in our model resembles entire phonological feature matrices
(such as the full presence of [s] in the output) and phonetic
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FIGURE 17 | A subset of predicted values of COG, kurtosis, and skew with 95% CIs in two conditions: WEAK with z-variables at the value before [s] ceases from the

output (left column) and STRONG (right column) with the most marginal value with [s]-output (±4.5 in most cases). Predicted values are based on generalized additive

models in Tables S4–S9 (Supplementary Materials). The plots show a clear differentiation from no significant differences in COG, kurtosis, and skew, to clear

significant overall differences and trajectory differences as the z-values move from WEAK toward the marginal (STRONG) values. Difference smooths for the presented

variables are in Figure S1, Supplementary Materials.

features (such as COG or kurtosis), but the relationships are
gradient and not categorical. The current model also does not
test whether higher order grouping of phonemes in accordance
with actual phonological features such as [±sonorant] emerge
in the training. This task is left for future work. Despite these
differences, the fact that we can actively control the presence
of [s] and its spectral properties in the generated data with
a subset of latent variables suggest that the network learns to
encode information in its latent space that resembles phonetic
and phonological representations.

On a very speculative level, the latent space of the Generator’s
network might have a conceptual correlation in featural
representation of speech production in human brain, where
featural representations are also gradient and involve multiple
correlates. Bashivan et al. (2019) argue for the existence of
direct correlations between the neural network architecture
and vision in human brain. Similarly, Guenther and Vladusich
(2012), Guenther (2016), and Oudeyer (2005) propose models
of simple neural maps that might have direct equivalents in
neural computation of speech planning with some actual clinical
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applications that result from such models10. Recently, high-
density direct cortical surface (electrocorticographic) recordings
of the superior temporal gyrus during open brain surgery in
Mesgarani et al. (2014) suggest that recorded brain activity has
direct correlates in encoding of phonetic features. Encoding
for phonetic and phonological features in the latent space
of the Generator’s network can speculatively be compared to
such brain recordings that serve as the basis for articulatory
execution. The correspondences between the brain activity and
phonetic and phonological features are multiple and gradual, not
categorical, which bear resemblances to our model. To be sure,
this comparison can only be indirect and speculative at this point.

5.3. Future Directions
Among the objections against modeling phonological learning
with Generative Adversarial Networks might be that the model
is too powerful and that it overgenerates. First, it has been
shown in numerous examples that phonology, while being
computationally limited (Heinz, 2011; Avcu et al., 2017), is more
powerful than the attested phonological typology. Subjects in
the artificial grammar learning paradigm are, for example, able
to successfully learn alternations that never surface in natural
languages (Glewwe, 2017; Glewwe et al., 2017; Avcu, 2018;
Beguš, 2018a,b). Second, overgeneration is a less severe violation
than undergeneration. Absence of unnattested patterns that are
derivable within a theory can be explained with external factors,
such as historical developments or articulatory limitations.
Not generating attested patterns, however, is a more serious
shortcoming: a model of phonology should at minimum derive
the observed phonological processes. Finally, the main reason the
proposed model overgenerates is because the current proposal
involves no information about the articulatory mechanism in
speech production. In other words, the GANmodel is completely
unconstrained for articulatory mechanisms.

This would be problematic if the goal of the current model
were a network that models phonetic and phonological learning
both on the articulatory and the cognitive levels. The aims of
the current proposal, however, are more restricted. The network
models learning without any articulatory information. Lack of
articulatory information in the model (and consequently, the
overgeneration problem) might in fact be an advantage for
computational models of the cognitive basis of speech production
and perception. It is likely that speech acquisition involves
various different types of learning. Learning of motor-planning
on the articulatory level is likely different from learning of
articulatory targets based on perception, which is in turn likely
controlled by other systems than learning of abstract symbol
manipulation on the phonological level, even though these levels
are interconnected in acquisition. Among the evidence that
exemplifies the different levels of representation are aphasia
patients with different production errors (Buchwald and Miozzo,
2012). If impairment targets the motor-planning unit, the

10Warlaumont and Finnegan (2016) propose a model of infant babbling that

involves spiking neural networks and speech synthesis. While the model does

not take any speech as an input, babbling emerges even if the objective for the

simulation is maximization of perceptual salience.

phonological level is intact and the production error causes
only deletion of [s] in #sTV target clusters with the stop being
unaspirated, as predicted by phonology. If, on the other hand,
phonological computation is impaired, the stop surfaces as
aspirated, similar to the outputs of our GANmodel. By excluding
articulatory information, we model phonetic and phonological
learning as if they were unconstrained by articulators and
therefore only influenced by the neural network architecture. In
other words, we model phonological computation on a cognitive
level as if no articulatory constraints were present in human
speech. This is highly desired for the task of distinguishing those
aspects of phonology that are influenced by cognitive factors
from those that are influenced by articulation, motor planning,
or historical developments (Beguš, 2018a).

While the proposal in this paper does not directly address the
discussion between generative and exemplar-based approaches
to phonology, the GAN models have the potential to offer
some insights into this discussion as well. The results of the
computational experiments suggest that the network learns to
output data consistent with the training data without grammar-
specific assumptions, which would support the exemplar-based
approaches to phonology. On the other hand, the Generator
network does seem to compress phonological information in its
latent space in a way that does not directly correspond to stored
exemplars. Further explorations of the latent space should shed
light on this long-standing discussion.

Several further explorations and improvements of the model
are warranted. The acoustic speech data fed to the network is
modeled as waveform data points, i.e., pressure points in a time
continuum (as proposed for WaveGAN in Donahue et al., 2019).
This has considerable advantages for exploring the properties
of the network, because spectral analysis introduces significant
losses in the signal. A GAN trained on spectral transformations
would likely be closer to reality, as human auditory mechanisms
resemble spectral information more closely than raw pressure
points (Young, 2008; Pasley et al., 2012; Mesgarani et al.,
2014). Adding an articulatory model would likewise yield novel
information on the role of articulatory learning on phonetic and
phonological computation.

6. CONCLUSION

The results of this paper suggest that we canmodel phonology not
only with rules (as in rule-based approaches; Chomsky and Halle,
1968), exemplars (Pierrehumbert, 2001), finite-state automata
(Heinz, 2010; Chandlee, 2014), input-output optimization (as
in Optimality Theory; Prince and Smolensky, 2004), or with
neural network architecture that already assumes some level of
abstraction (see Section 1), but as a mapping between random
latent variables and output data in deep neural networks that are
trained in an unsupervised manner from raw acoustic data. To
the author’s knowledge, this is the first paper testing learning of
allophonic distributions in an unsupervised manner from raw
acoustic data using neural networks and the first proposal to
use GANs for modeling language acquisition. The Generative
Adversarial model of phonology (trained on an implementation
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of DCGAN architecture for audio data in Donahue et al.,
2019) derives outputs that resemble speech from latent variables.
The results of the computational experiment suggest that the
network learns the conditional allophonic distribution of VOT
duration. We propose a technique that identifies variables in
the latent space that correspond to phonetic and phonological
properties in the output, such as the presence of [s], and show
that by manipulating these values, we can generate data with
or without [s] in the output as well as control its intensity
and spectral properties of its frication noise. While at least
seven latent variables control the presence of [s], each of
them likely has a phonetic function that controls spectral
properties of the frication noise. The proposed technique thus
suggests that the Generator network learns to encode phonetic
and phonological information in its latent space. Finally, the
model generates innovative outputs, suggesting its productive
nature. The behavior of the model is compared against speech
acquisition, speech errors, and speech impairment; several
parallels are identified.

The current proposal models one allophonic distribution in
English. Training GAN networks on further processes and on
languages other than English as well as probing the networks
at different training steps should yield more information about
learning representations of different features, phonetic and
phonological processes, and about computational models of the
cognitive aspects of human speech production and perception
in general. This paper outlines a methodology for establishing
internal representations and testing predictions against generated
data, but represents just a first step in a broader task of
modeling phonetic and phonological learning in a Generative
Adversarial framework.

The proposed model also has implications beyond modeling
the cognitive basis of human speech. The results of establishing
internal representations of the Generator network have

implications for more applicable tasks in natural language
processing. Identifying latent variables that correspond to output
sounds allows for a model that generates desired output strings

with different output properties. Discussing the details of such
models is beyond the scope of this paper.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

This research was funded by a grant to new faculty at the
University of Washington. Publication made possible in part
by support from the Berkeley Research Impact Initative (BRII)
sponsored by the UC Berkeley Library.

ACKNOWLEDGMENTS

I would like to thank Sameer Arshad for slicing data from the
TIMIT database andHeatherMorrison for annotating data. Parts
of this research were published in Beguš (2020).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2020.
00044/full#supplementary-material

REFERENCES

Abramson, A. S., andWhalen, D. (2017). Voice onset time (VOT) at 50: theoretical

and practical issues in measuring voicing distinctions. J. Phonet. 63, 75–86.

doi: 10.1016/j.wocn.2017.05.002

Adlam, B., Weill, C., and Kapoor, A. (2019). Investigating under and

overfitting in wasserstein generative adversarial networks. arXiv [Preprint].

arXiv:1910.14137.

Alanazi, S. (2018). The acquisition of English stops by Saudi L2 learners (Ph.D.

thesis). University of Essex, Essex, United Kingdom.

Alderete, J., and Tupper, P. (2018a). “Connectionist approaches to generative

phonology,” in The Routledge Handbook of Phonological Theory, eds

A. Bosch and S. J. Hannahs (New York, NY: Routledge), 360–390.

doi: 10.4324/9781315675428-13

Alderete, J., and Tupper, P. (2018b). Phonological regularity, perceptual biases, and

the role of phonotactics in speech error analysis. Wiley Interdiscipl. Rev. Cogn.

Sci. 9:e1466. doi: 10.1002/wcs.1466

Alderete, J., Tupper, P., and Frisch, S. A. (2013). Phonological

constraint induction in a connectionist network: learning ocp-place

constraints from data. Lang. Sci. 37, 52–69. doi: 10.1016/j.langsci.2012.

10.002

Arjovsky, M., Chintala, S., and Bottou, L. (2017). “Wasserstein generative

adversarial networks,” in Proceedings of the 34th International Conference on

Machine Learning, eds. D. Precup and Y. W. Teh (Sydney, NSW: PMLR;

International Convention Centre), vol. 70 of Proceedings of Machine Learning

Research, 214-223

Avcu, E. (2018). “Experimental investigation of the subregular hypothesis,” in

Proceedings of the 35th West Coast Conference on Formal Linguistics, eds W.

G. Bennett, L. Hracs, and D. R. Storoshenko (Somerville, MA: Cascadilla),

77–86.

Avcu, E., Shibata, C., and Heinz, J. (2017). “Subregular complexity and deep

learning,” in CLASP Papers in Computational Linguistics: Proceedings of the

Conference on Logic and Machine Learning in Natural Language (LaML 2017),

eds S. Dobnik and S. Lappin. (Gothenburg), 20–33.

Baayen, R. H., van Rij, J., de Cat, C., and Wood, S. N. (2016). Autocorrelated

errors in experimental data in the language sciences: some solutions offered

by Generalized Additive Mixed Models. arXiv [Preprint]. arXiv:1601.02043.

Barlow, J. A. (2001). Case study. Lang. Speech Hear. Serv. Sch. 32, 242–256.

doi: 10.1044/0161-1461(2001/022)

Bashivan, P., Kar, K., and DiCarlo, J. J. (2019). Neural population control via deep

image synthesis. Science 364:6439. doi: 10.1126/science.aav9436

Beguš, G. (2018a). Post-nasal devoicing and the blurring

process. J. Linguist. 55, 689–753. doi: 10.1017/S00222267180

0049X

Beguš, G. (2018b).Unnatural phonology: a synchrony-diachrony interface approach

(Ph.D. thesis). Harvard University, Cambridge, MA, United States.

Beguš, G. (2020). “Modeling unsupervised phonetic and phonological

learning in Generative Adversarial Phonology,” in Proceedings of the

Frontiers in Artificial Intelligence | www.frontiersin.org 22 July 2020 | Volume 3 | Article 44

https://www.frontiersin.org/articles/10.3389/frai.2020.00044/full#supplementary-material
https://doi.org/10.1016/j.wocn.2017.05.002
https://doi.org/10.4324/9781315675428-13
https://doi.org/10.1002/wcs.1466
https://doi.org/10.1016/j.langsci.2012.10.002
https://doi.org/10.1044/0161-1461(2001/022)
https://doi.org/10.1126/science.aav9436
https://doi.org/10.1017/S002222671800049X
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Beguš Generative Adversarial Phonology

Society for Computation in Linguistics: Vol. 3 (New Orleans, LA), 15.

doi: 10.7275/nbrf-1a27

Boersma, P., and Weenink, D. (2015). PRAAT: Doing Phonetics by Computer

[Computer Program]. version 5.4.06. Available online at: http://www.praat.org/

(Retrieved February 21, 2015).

Bond, Z. S. (1981). A note concerning /s/ plus stop clusters in the

speech of language-delayed children. Appl. Psycholinguist. 2, 55–63.

doi: 10.1017/S0142716400000655

Bond, Z. S., and Wilson, H. F. (1980). /s/ plus stop clusters in children’s speech.

Phonetica 37, 149–158. doi: 10.1159/000259988

Buchwald, A., and Miozzo, M. (2012). Phonological and motor errors in

individuals with acquired sound production impairment. J. Speech Lang. Hear.

Res. 55, S1573–S1586. doi: 10.1044/1092-4388(2012/11-0200)

Bybee, J. (1999). “Usage-based phonology,” in Functionalism and Formalism in

Linguistics, Vol. 1, eds M. Darnell, E. Moravcsik, F. Newmeyer, M. Noonan,

and K. Wheatley (Amsterdam: John Benjamins), 211–242.

Catts, H. W., and Jensen, P. J. (1983). Speech timing of phonologically disordered

children. J. Speech Lang. Hear. Res. 26, 501–510. doi: 10.1044/jshr.2604.501

Catts, H. W., and Kamhi, A. G. (1984). Simplification of /s/ + stop consonant

clusters. J. Speech Lang. Hear. Res. 27, 556–561. doi: 10.1044/jshr.2704.556

Chandlee, J. (2014). Strictly local phonological processes (Ph.D. thesis). University

of Delaware, Newark, DE, United States.

Chomsky, N., and Halle, M. (1968). The Sound Pattern of English. New York, NY:

Harper & Row.

Clements, G. N. (1985). The geometry of phonological features. Phonol. Yearbook

2, 225–252. doi: 10.1017/S0952675700000440

Cohn, A. C. (2006). “Is there gradient phonology?” in Gradience in Grammar:

Generative Perspectives, eds G. Fanselow, C. Féry, and M. Schlesewsky (Oxford:

Oxford University Press), 25–44.

Davis, S., and Cho, M.-H. (2006). The distribution of aspirated stops and /h/

in American English and Korean: an alignment approach with typological

implications. Linguistics. 41, 607–652. doi: 10.1515/ling.2003.020

de Boer, B. (2000). Self-organization in vowel systems. J. Phonet. 28, 441–465.

doi: 10.1006/jpho.2000.0125

de Lacy, P. (2006). Transmissibility and the role of the phonological component:

a theoretical synopsis of evolutionary phonology. Theor. Linguist. 32, 185–196.

doi: 10.1515/TL.2006.012

de Lacy, P., and Kingston, J. (2013). Synchronic explanation. Nat. Lang. Linguist.

Theory 31, 287–355. doi: 10.1007/s11049-013-9191-y

Donahue, C., Balsubramani, A., McAuley, J. J., and Lipton, Z. C. (2017).

Semantically decomposing the latent spaces of generative adversarial networks.

CoRR arXiv [preprint]. arXiv:1705.07904.

Donahue, C., McAuley, J. J., and Puckette, M. S. (2019). “Adversarial audio

synthesis,” in 7th International Conference on Learning Representations, ICLR

2019 (NewOrleans, LA: OpenReview.net) Available online at: https://arxiv.org/

abs/1802.04208

Dresher, B. E. (2015). The motivation for contrastive feature hierarchies in

phonology. Linguist. Variat. 15, 1–40. doi: 10.1075/lv.15.1.01dre

Dupoux, E. (2018). Cognitive science in the era of artificial intelligence: a roadmap

for reverse-engineering the infant language-learner. Cognition 173, 43–59.

doi: 10.1016/j.cognition.2017.11.008

Eloff, R., Nortje, A., van Niekerk, B., Govender, A., Nortje, L., Pretorius, A.,

et al. (2019). “Unsupervised acoustic unit discovery for speech synthesis using

discrete latent-variable neural networks,” in Proc. Interspeech 2019 (Graz),

1103–1107. doi: 10.21437/Interspeech.2019-1518

Ernestus, M. (2011). “Gradience and categoricality in phonological theory,”

in The Blackwell Companion to Phonology, eds. M. van Oostendorp, C.

j. Ewen, E. Hume, and K. Rice (Malden, MA: Wiley Blackwell), 1–22.

doi: 10.1002/9781444335262.wbctp0089

Faruqui, M., Tsvetkov, Y., Neubig, G., and Dyer, C. (2016). “Morphological

inflection generation using character sequence to sequence learning,” in

Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies

(San Diego, CA: Association for Computational Linguistics), 634–643.

doi: 10.18653/v1/N16-1077

Fox, J., and Weisberg, S. (2019). An R Companion to Applied Regression, 3rd Edn.

Thousand Oaks CA: Sage.

Fruehwald, J. (2016). The early influence of phonology on a phonetic change.

Language 92, 376–410. doi: 10.1353/lan.2016.0041

Fruehwald, J. (2017). The role of phonology in phonetic change. Annu.

Rev. Linguist. 3, 25–42. doi: 10.1146/annurev-linguistics-011516-

034101

Futrell, R., Albright, A., Graff, P., and O’Donnell, T. J. (2017). A generative

model of phonotactics. Trans. Assoc. Comput. Linguist. 5, 73–86.

doi: 10.1162/tacl_a_00047

Gahl, S., and Yu, A. C. L. (2006). Introduction to the special issue

on exemplar-based models in linguistics. Linguist. Rev. 23, 213–216.

doi: 10.1515/TLR.2006.007

Garofolo, J. S., Lamel, L., Fisher, M. W., Fiscus, J., Pallett, S. D., Dahlgren, L. N.,

et al. (1993). TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1.

Web Download. Philadelphia: Linguistic Data Consortium.

Gaskell, M., Hare, M., and Marslen-Wilson, W. D. (1995). A connectionist model

of phonological representation in speech perception. Cogn. Sci. 19, 407–439.

doi: 10.1207/s15516709cog1904_1

Gerlach, S. R. (2010). The acquisition of consonant feature sequences: harmony,

metathesis and deletion patterns in phonological development (Ph.D. thesis).

University of Minnesota, Minneapolis, MN, United States.

Gibson, K. R., Tallerman, M., and MacNeilage, P. F. (2012). “The evolution

of phonology,” in The Oxford Handbook of Language Evolution, eds

K. R. Gibson and M. Tallerman (Oxford: Oxford University Press).

doi: 10.1093/oxfordhb/9780199541119.001.0001

Glewwe, E. (2017). “Substantive bias in phonotactic learning: Positional extension

of an obstruent voicing contrast,” Talk presented at the 53rd meeting of Chicago

Linguistic Society (Chicago, IL).

Glewwe, E., Zymet, J., Adams, J., Jacobson, R., Yates, A., Zeng, A., et al. (2017).

“Substantive bias and word-final voiced obstruents: an artificial grammar

learning study,” Talk presented at the 92nd Annual Meeting of the Linguistic

Society of America (Salt Lake City, UT).

Goldwater, S., and Johnson, M. (2003). “Learning OT constraint rankings using a

maximum entropy model,” in Proceedings of the Workshop on Variation within

Optimality Theory, eds J. Spenader, A. Eriksson, and O. Dahl (Stockholm:

Stockholm University), 111–120.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

et al. (2014). “Generative adversarial nets,” in Advances in Neural Information

Processing Systems 27, eds Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger (Red Hook, NY: Curran Associates, Inc.),

2672–2680.

Guenther, F. H. (2016). Neural Control of Speech. Cambridge, MA: MIT Press.

doi: 10.7551/mitpress/10471.001.0001

Guenther, F. H., and Vladusich, T. (2012). A neural theory of

speech acquisition and production. J. Neurolinguist. 25, 408–422.

doi: 10.1016/j.jneuroling.2009.08.006

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).

“Improved training of wasserstein gans,” in Advances in Neural Information

Processing Systems 30, eds I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.

Fergus, S. Vishwanathan, and R. Garnett (Red Hook, NY: Curran Associates,

Inc.), 5767–5777.

Haraguchi, Y. (2003). “The acquisition of aspiration of voiceless stops and

intonation patterns of English learners: pilot study,” in Proceeding of the 8th

Conference of Pan-Pacific Association of Applied Linguistics (Okayama), 83-91.

Hayes, B. (1999). “Phonetically-driven phonology: the role of optimality theory

and inductive grounding,” in Functionalism and Formalism in Linguistics,

Volume I: General Papers, eds M. Darnell and E. Moravscik (Amsterdam: John

Benjamins), 243–285. doi: 10.1075/slcs.41.13hay

Hayes, B., andWhite, J. (2013). Phonological naturalness and phonotactic learning.

Linguist. Inq. 44, 45–75. doi: 10.1162/LING_a_00119

Hayes, B., and Wilson, C. (2008). A maximum entropy model of

phonotactics and phonotactic learning. Linguist. Inq. 39, 379–440.

doi: 10.1162/ling.2008.39.3.379

Heinz, J. (2010). Learning long-distance phonotactics. Linguist. Inq. 41, 623–661.

doi: 10.1162/LING_a_00015

Heinz, J. (2011). Computational phonology–part II: grammars,

learning, and the future. Lang. Linguist. Compass 5, 153–168.

doi: 10.1111/j.1749-818X.2011.00268.x

Frontiers in Artificial Intelligence | www.frontiersin.org 23 July 2020 | Volume 3 | Article 44

https://doi.org/10.7275/nbrf-1a27
https://doi.org/10.1017/S0142716400000655
https://doi.org/10.1159/000259988
https://doi.org/10.1044/1092-4388(2012/11-0200)
https://doi.org/10.1044/jshr.2604.501
https://doi.org/10.1044/jshr.2704.556
https://doi.org/10.1017/S0952675700000440
https://doi.org/10.1515/ling.2003.020
https://doi.org/10.1006/jpho.2000.0125
https://doi.org/10.1515/TL.2006.012
https://doi.org/10.1007/s11049-013-9191-y
https://arxiv.org/abs/1802.04208
https://arxiv.org/abs/1802.04208
https://doi.org/10.1075/lv.15.1.01dre
https://doi.org/10.1016/j.cognition.2017.11.008
https://doi.org/10.21437/Interspeech.2019-1518
https://doi.org/10.1002/9781444335262.wbctp0089
https://doi.org/10.18653/v1/N16-1077
https://doi.org/10.1353/lan.2016.0041
https://doi.org/10.1146/annurev-linguistics-011516-034101
https://doi.org/10.1162/tacl_a_00047
https://doi.org/10.1515/TLR.2006.007
https://doi.org/10.1207/s15516709cog1904_1
https://doi.org/10.1093/oxfordhb/9780199541119.001.0001
https://doi.org/10.7551/mitpress/10471.001.0001
https://doi.org/10.1016/j.jneuroling.2009.08.006
https://doi.org/10.1075/slcs.41.13hay
https://doi.org/10.1162/LING_a_00119
https://doi.org/10.1162/ling.2008.39.3.379
https://doi.org/10.1162/LING_a_00015
https://doi.org/10.1111/j.1749-818X.2011.00268.x
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Beguš Generative Adversarial Phonology

Inkelas, S., and Shih, S. S. (2017). “Looking into segments,” in Proceedings of the

Forty-Fifth Annual Meeting of the North East Linguistic Society, eds K. Jesney,

C. O’Hara, C. Smith, and R. Walker (Washington, DC: Linguistic Society of

America), 1–18. doi: 10.3765/amp.v4i0.3996

Iverson, G. K., and Salmons, J. C. (1995). Aspiration and laryngeal representation

in Germanic. Phonology 12, 369–396. doi: 10.1017/S0952675700002566

Jarosz, G. (2019). Computational modeling of phonological learning. Annu. Rev.

Linguist. 5, 67–90. doi: 10.1146/annurev-linguistics-011718-011832

Johnson, K. (1997). “Speech perception without speaker normalization: an

exemplar model,” in Talker Variability in Speech Processing (San Diego, CA:

Academic Press), 145–165.

Johnson, K. (2007). “Decisions and mechanisms in exemplar-based phonology,”

in Experimental Approaches to Phonology, eds M. J. Solé, P. S. Beddor, and M.

Ohala (Oxford: Oxford University Press), 25–40.

Kamper, H., Elsner, M., Jansen, A., and Goldwater, S. (2015). “Unsupervised

neural network based feature extraction using weak top-down constraints,” in

2015 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) (Brisbane, QLD), 5818–5822. doi: 10.1109/ICASSP.2015.7179087

Kaplan, A. (2017). “Exemplar-based models in linguistics,” in Oxford

Bibliographies in Linguistics, ed M. Aronoff (Oxford: Oxford University

Press). doi: 10.1093/obo/9780199772810-0201

Kello, C., and Plaut, D. (2003). “The interplay of perception and production in

phonological development: beginnings of a connectionist model trained on real

speech,” in 5th International Congress of Phonetic Sciences, eds M. J. Solé, D.

Recasens, and J. Romero (Barcelona), pages 297–300.

Keyser, S. J., and Stevens, K. N. (2006). Enhancement and overlap in the speech

chain. Language 82, 33–63. doi: 10.1353/lan.2006.0051

Kingston, J., and Diehl, R. L. (1994). Phonetic knowledge. Language 70, 419–454.

doi: 10.1353/lan.1994.0023

Kirby, J., and Sonderegger, M. (2015). Bias and population structure in the

actuation of sound change. arXiv [preprint]. arXiv:1507.04420.

Kirov, C. (2017). “Recurrent neural networks as a strong baseline for

morphophonological learning,” Poster Presented at 2017 Meeting of the

Linguistic Society of America (Austin, TX). Available online at: https://ckirov.

github.io/papers/lsa2017.pdf (accessed October 7, 2019).

Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron 67,

713–727. doi: 10.1016/j.neuron.2010.08.038

Lee, C.-y., and Glass, J. (2012). “A nonparametric Bayesian approach to acoustic

model discovery,” in Proceedings of the 50th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers) (Jeju Island: Association

for Computational Linguistics), 40–49.

Legendre, G., Miyata, Y., and Smolensky, P. (1990). Harmonic grammar: A

formal multi-level connectionist theory of linguistic well-formedness: Theoretical

Foundations. University of Colorado, Boulder, CO. ICS Technical Report #90-5.

Legendre, G., Sorace, A., and Smolensky, P. (2006). “The optimality theory–

harmonic grammar connection,” in The Harmonic Mind: From Neural

Computation to Optimality-Theoretic Grammar, eds P. Smolensky and G.

Legendre (Cambridge, MA: MIT Press), 339–402.

Lennes, M. (2003). f0-f1-f2-Intensity_PRAAT_Script. PRAAT script. Modified by

Dan McCloy, Esther Le Grésauze, and Gašper Beguš.

Lillicrap, T. P., and Kording, K. P. (2019). What does it mean to understand a

neural network? arXiv [preprint]. arXiv:1907.06374.

Lipton, Z. C., and Tripathi, S. (2017). Precise recovery of latent vectors from

generative adversarial networks. CoRR arXiv [preprint]. arXiv:1702.04782.

Lisker, L. (1984). How is the aspiration of English /p, t, k/ “predictable”? Lang.

Speech 27, 391–394. doi: 10.1177/002383098402700409

Lisker, L., and Abramson, A. S. (1964). A cross-language study of

voicing in initial stops: acoustical measurements. Word 20, 384–422.

doi: 10.1080/00437956.1964.11659830

Lowenstein, J. H., and Nittrouer, S. (2008). Patterns of acquisition of native voice

onset time in English-learning children. J. Acous. Soc. Am. 124, 1180–1191.

doi: 10.1121/1.2945118

Macken, M. A., and Barton, D. (1980). The acquisition of the voicing contrast in

English: a study of voice onset time in word-initial stop consonants. J. Child

Lang. 7, 41–74. doi: 10.1017/S0305000900007029

Macken, M. A., and Ferguson, C. A. (1981). Phonological universals

in language acquisition*. Ann. N. Y. Acad. Sci. 379, 110–129.

doi: 10.1111/j.1749-6632.1981.tb42002.x

Mahalunkar, A., and Kelleher, J. D. (2018). “Using regular languages to explore the

representational capacity of recurrent neural architectures,” in Artificial Neural

Networks and Machine Learning-ICANN 2018, V. Kůrková, Y. Manolopoulos,
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