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Interpreting Intermediate Convolutional Layers of
Generative CNNs Trained on Waveforms

Gašper Beguš and Alan Zhou

Abstract—This paper presents a technique to interpret and visu-
alize intermediate layers in generative CNNs trained on raw speech
data in an unsupervised manner. We argue that averaging over
feature maps after ReLU activation in each transpose convolu-
tional layer yields interpretable time-series data. This technique
allows for acoustic analysis of intermediate layers that parallels
the acoustic analysis of human speech data: we can extract F0,
intensity, duration, formants, and other acoustic properties from
intermediate layers in order to test where and how CNNs encode
various types of information. We further combine this technique
with linear interpolation of a model’s latent space to show a causal
relationship between individual variables in the latent space and
activations in a model’s intermediate convolutional layers. In par-
ticular, observing the causal effect between linear interpolation
and the resulting changes in intermediate layers can reveal how
individual latent variables get transformed into spikes in activation
in intermediate layers. We train and probe internal representations
of two models — a bare WaveGAN architecture and a ciwGAN ex-
tension which forces the Generator to output informative data and
results in the emergence of linguistically meaningful representa-
tions. Interpretation and visualization is performed for three basic
acoustic properties of speech: periodic vibration (corresponding
to vowels), aperiodic noise vibration (corresponding to fricatives),
and silence (corresponding to stops). The proposal also allows
testing of higher-level morphophonological alternations such as
reduplication (copying). In short, using the proposed technique,
we can analyze how linguistically meaningful units in speech get
encoded in each convolutional layer of a generative neural network.

Index Terms—Convolutional neural networks, GANs, interpre-
tability, speech.

I. INTRODUCTION

HOW deep convolutional neural networks (CNNs) learn
their internal representations is one of the central ques-

tions in machine learning. The vast majority of work on
this topic is centered on the visual domain. Here, we pro-
pose a technique to visualize and interpret the intermedi-
ate layers of deep convolutional neural networks trained on
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speech in an unsupervised manner. There are several advan-
tages of interpreting intermediate layers in convolutional neu-
ral networks that are trained on speech over those trained on
visual data.

First, humans process speech by discretizing the continuous
physical properties of sound into discrete mental representations
called phonemes. A long tradition of scientific study of pho-
netics and phonology [1], [2] has resulted in a relatively good
understanding of how humans represent continuous properties
in speech with such discrete units. A process reminiscent of
human phonology emerges in unsupervised CNNs: they learn
to represent the continuous space of spoken language with
discretized representations [3], [4].

Second, speech data contains multiple local and non-local de-
pendencies with different degrees of computational complexity
that are well-documented and well-understood. For example,
changing or adding a single sound to a word can result in a
change in meaning. The English word pit [ˈphɪt] has a different
meaning from spit [ˈspɪt]. Two processes occur here. First, the
addition of the sound [s] changes the meaning of the word.
Second, the stop consonant is produced with aspiration (puff
of air marked by h) in the first word with no preceding [s], but
without aspiration in the second word with preceding [s]. This
contextually conditioned complementary distribution (between
[ph] and [p]) is computationally simple, but this is not true
for all processes in human speech. For example, many natural
languages feature an identity-based process called reduplication
which requires phonological material to be copied from the
output. A reduplicated form of the base [para] is [papara], where
the first consonant and the first vowel [pa] in the base [para] are
repeated (copied), which results in [papara]. Reduplication is
on a higher complexity level than other phonological processes
on the Chomsky hierarchy; it is more than context-free when
most other phonological processes are regular [5], [6], [7],
[8], [9], [10]. Specifically, it is a non-concatenative process
that requires learners to copy phonological material from the
base: [pa] is the prefix only for the bases starting with [pa]
such as [para]. For other bases (such as [tara] or [mura]), the
reduplication morphemes that fulfill exactly the same function
are substantially different: [ta] and [mu], which makes learning
more challenging than simple concatenative patterns. We can use
these well-understood dependencies with different degrees of
computational complexity to test what internal representations
are learned from raw continuous data by CNNs and how they
are learned. We are also able to test which acoustic properties
get encoded at each convolutional layer.
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Finally, an advantage of interpreting CNNs trained on speech
is that behavioral and acquisitional data is easy to obtain for
speech. We can directly compare developmental stages in child
language acquisition with stages of CNNs trained on speech [3],
or use the same data to train human subjects and CNNs [11].
Outputs of the proposed technique can also be directly compared
with human neuroimaging data, which contains time-series data
of electrical activity in different parts of the brain recorded with
various neuroimaging techniques.

II. PRIOR WORK

Visualizing convolutional layers is performed primarily on
models trained on visual data [12], with considerably less work
focused on the visualization of convolutional layers of the
models trained on speech [13], [14], [15], [16]. For example,
work on unsupervised models such as generative adversarial
networks (GANs) has primarily been carried out on image data,
and has been successful in identifying relationships in the latent
space [17], as well as intermediate representations of various
generated classes [18]. These approaches often leverage tech-
niques specific to the visual domain, such as attribute prediction
and image segmentation.

A. Interpreting Models Trained on Speech

Substantially less work exists on interpreting convolutional
layers trained on speech, and the majority of this work operates
on supervised models. Many proposals focus on interpreting and
visualizing filters. The SincNet proposal [19] visualizes filters,
and by imposing restrictions on filters, achieves better perfor-
mance on an ASR task compared to unrestricted CNNs. Huang
et al. [13] likewise focus on visualizing filters of convolutional
layers from supervised models trained for ASR tasks. [14], [20],
[21] make use of activation maps of convolutions on spectrogram
inputs, using them to compute neuron activation profiles. The
proposed techniques can highlight important regions for ASR
tasks in CNNs, but focus more on individual neuron activations
than intermediate representations. Millet and King [22] analyze
activations in deep neural networks and correlate them with
fMRI data.

Palaz et al. [23], [24], [25], Muckenhirn et al. [26], [27],
and Golik et al. [28] also analyze learned filters at different
convolutional layers. Muckenhirn et al. [27] analyze filters of
CNN models for ASR tasks, but trained on raw waveforms. They
also visualize estimated F0 contours based on filters in the first
convolutional layer [27]. Analysis of the filters can, for example,
reveal which frequency bands various filters target. This can in
turn reveal what types of acoustic data are encoded at which
convolutional layers. However, the proposed techniques yield
less directly interpretable outputs. For example, this technique
does not allow a direct analysis of waveforms from individual
convolutional layer that directly correspond to some phonetic
element in the final output layer.

Muckenhirn et al. [15] propose a gradient-based visualization
technique for CNNs trained on raw waveforms (based on [29])
which yields relevance maps from the input signal that can be
acoustically analyzed (a similar proposal that uses relevance

maps is in [16]). Their models are trained on supervised tasks:
phone or speaker identification. Similar to our technique, their
proposal enables analysis of acoustic properties (such as formant
values and F0) in CNNs on a time-series data. Their method,
however, does not focus on analyzing which acoustic repre-
sentations are encoded at each layer, focusing instead on the
most relevant parts of the input signal. Their supervised model
also lacks the ability to test effects of individual latent variables
on convolutional layers. Additionally, they focus on spectral
analyses as they argue that “[v]isualization in the time domain
does not bring much insights into what important characteristics
are extracted by the network because the results are difficult to
interpret, as we do not have any visual cues as in the case of
images” [15, p. 2346]. This paper argues that averaged ReLU
activations of feature maps combined with manipulation and
linear interpolation of individual linguistically meaningful latent
variables yield highly interpretable time-series data. Koumura
et al. [30] also examine a CNN trained on raw waveforms,
taking inspiration from single neuron recordings to examine the
activations of individual units. They examine the synchrony of
individual activations to an input stimulus, and take averages
across time rather than across layers. Harwath and Glass [31]
take the L2 norm of activation maps in spectrograms and per-
form a PCA analysis of their outputs. Their work focuses on
phoneme transition marking in one convolutional layer. To our
knowledge, none of the proposals test the causal effect between
latent variables and intermediate convolutional layers or probe
representations in a generative model (which brings several
advantages outlined below).

B. Our Approach

Here, we propose a different approach for interpreting inter-
mediate convolutional layers from the existing proposals out-
lined above. By interpretability, we mean the ability to analyze
how meaningful units in data are represented in intermediate
convolutional layers. We propose a set of techniques that enables
testing predictions such as what acoustic properties are encoded
at what layer (and how) in a decoder (Generator) network. Rather
than analyzing convolutional layers in a supervised model or
analyzing filters, our proposal focuses on the activations of
intermediate transpose convolutions of a Generator network that
was trained on speech in a GAN framework. Whereas traditional
convolutions are usually used to downsample preexisting data
into lower-dimensional representations, transpose convolutions
work in reverse, upsampling from a low-dimensional latent rep-
resentation in order to generate new data. This framework causes
some key differences in the structure of our intermediate layers,
with the highest-level representations appearing in the deepest
layers of the network. However, it also allows for exploration of
causal relationships between representations of phonetic units
in the latent space and encoding of those units in intermediate
convolutional layers.

Our proposal brings several aspects that facilitate the inter-
pretability of the activations of these intermediate convolutional
layers. In [32], we propose that averaging over feature maps
yields interpretable time series data, but focus exclusively on the
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classifier network in which the causal relationship between the
network’s classification output and intermediate layers cannot
be established. [32] also focuses only on encoding of words and
individual acoustic contrasts (and not phonological processes).
Here, we follow the proposal in [32], but focus on the Generator
network. We introduce several new approaches to the paradigm:
(i) manipulating and interpolating individual latent variables
well beyond training range (based on [3]) while visualizing
intermediate layers, which enables (ii) observing the causal
relationship between individual variables in the latent space
and linguistically meaningful units in intermediate layers; (iii)
testing which acoustic properties are encoded at which layer
via correlations; and (iv) testing not only encoding of acoustic
properties or words, but also of phonological processes and
higher-level morphophonological processes such as reduplica-
tion. Like in [32], we train the networks in an unsupervised
manner and interpret time-series data directly.1 Below we outline
why these aspects are important.

One of the main difficulties with interpreting convolutional
layers in supervised ASR models is that it is not trivial to elicit
or amplify activations given that the network takes raw data as
inputs and outputs some classification, as we can only directly
modify the raw data input. We propose an interpretable alterna-
tive: we build on a proposal in [3] that individual latent variables
in a generative model can be manipulated to marginal levels
well outside the training range, and that linear interpolation can
reveal the causal relationship between individual variables and
meaningful linguistic representations in the output and apply
these two concepts to the visualization paradigm. The majority
of proposals on CNN interpretability, known to the authors, do
not manipulate individual latent variables. The generative and
unsupervised aspect of the GAN framework (namely WaveGAN
and ciwGAN) make this technique possible: we can manipu-
late the latent space and observe causal effects of individual
meaningful variables on intermediate layers. In other words,
we can observe how individual variables with some linguistic
function get transformed throughout the convolutional layers
while keeping the rest of the latent space z constant.

We interpret and visualize intermediate convolutional layers
in a fully unsupervised manner — in the GAN framework. The
majority of ASR/synthesis models using CNNs are supervised.
The advantage of interpreting intermediate layers on unsuper-
vised models is that the final reduced representation layer is
not trained on a classification problem with a softmax func-
tion, but is connected to uniformly distributed random variables
(or a combination of binary and uniformly distributed random
variables) that get transformed to data in the output layer. This
means that we can analyze self-organization of meaningful
representations in intermediate convolutional layers and directly
observe effects of individual variables in the latent space on
intermediate representations.

The same technique can also be applied to other zero-resource
speech models for unsupervised acoustic word embedding [33],
[34] (such as autoencoders [35], [36], [37], [38], [39], [40], [41],

1Other proposals also operate with raw waveforms and some also visualize
feature maps (see above).

[42]), but GANs are chosen because they are unsupervised not
only in the encoding task, but also in the generative task and as
such even more suitable for generating novel outputs. Unlike in
variational autoencoders (VAEs), the generator of a GAN never
directly accesses the training data. In the GAN architecture,
the generation aspect is fully unsupervised: the Generator is
never fully connected to the input training data and thus needs
to learn to generate data from noise without directly accessing
the training data [4] (for differences in performance between
VAEs and GANs in the visual domain, see [43]). Additionally,
unsupervised ASR models increasingly include the GAN archi-
tecture [44].

Finally, the output of the proposed technique [32] is directly
interpretable time-series data. Our proposal requires no further
processing of the outputs (such as PCA): the proposed technique
results in time-series data from each convolutional layer that
directly correspond to the waveform output in the final layer.
This means that we can analyze outputs at the same time domain
across the convolutional layers. Understanding encoding of in-
termediate representations in unsupervised models that operate
with waveforms will be particularly important as ASR models
increasingly operate with raw waveforms [42], [45].

III. MODELS

A. Model Description

The interpretation and visualization of individual layers is per-
formed on the Generator network in two models: WaveGAN [46]
and ciwGAN [4]. WaveGAN is a single-dimensional transfor-
mation of the Deep Convolutional GAN (DCGAN) architec-
ture [47] used for waveform data. Categorical InfoWaveGAN
(CiwGAN) is an InfoGAN [48] modification of WaveGAN that
includes an additional “Q-network” which forces the Generator
to output informative data.

Both WaveGAN and ciwGAN contain a Generator and a
Discriminator. The Generator takes 100 latent variables z uni-
formly distributed in the interval (−1, 1) and transforms them
into 16,384 data points constituting 1.024 s of audio file (sam-
pled at 16 kHz) through five 1D convolutional layers. The
dimensions of the five convolutions (four intermediate layers
and the final output layer) are 512× 64× 1, 256× 256× 1,
128× 1024× 1, and 64× 4096× 1. The final layer (with tanh
activation) has a dimension of 16384× 1× 1. All layers except
for the last one are trained with ReLU activation. The dimensions
are summarized in Fig. 1.

The Discriminator network takes real and generated au-
dio files (16,384 data points constituting audio file) and is
trained using the Wasserstein loss formulation [49] with gradient
penalty [50] (WGAN-GP). The Wasserstein distance between
two distributions PX and PG is given by:

W(PX , PG) = sup
‖f‖L≤1

Ex∼PX
[f(x)]− Ex∼PG

[f(x)] (1)

where x describes datapoints sampled from each distribution
and ‖f‖L ≤ 1 is the family of 1-Lipshitz functions [49]. In
WGAN-GP, we have the Discriminator take the place of f in
(1), and use gradient penalty during training to ensure that the
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Fig. 1. The architecture of the Generator network with five one-dimensional
convolutional layers as proposed in [46] and used for training in this paper.
Filters are one-dimensional with the size of 25 [46].

Fig. 2. The ciwGAN architecture as proposed in [4] used for interpreting
intermediate layers in Section IV-C. Figure taken from [52].

Discriminator remains 1-Lipschitz. We thus have the Generator
and Discriminator participate in the following zero-sum game:

min
θG

max
θD

(Ex∼PX
[D(x)]− Ez∼Pz

[D(G(z))]) (2)

where θG are the parameters of the Generator, θD the parameters
of the Discriminator, G the Generator, D the discriminator, Px

the training distribution, and Pz the distribution of the latent
space [46]. During training, the Generator and Discriminator
take turns minimizing or maximizing the objective in (2), ideally
reaching equilibrium when the approximated Wasserstein dis-
tance between the generated samples and real data is minimized.

The ciwGAN architecture [4] modifies the bare WaveGAN
architecture by having the Generator take as input categorical
code variables c in addition to the latent variables z and with
the addition of a separate Q-network [4] to estimate these cat-
egorical codes c. The Q-network and the Generator are trained
to maximize the Q-network’s success rates (the architecture is
summarized in Fig. 2). The Q-network is in structure identical
to the Discriminator except in its final layer, which is trained on
estimating the Generator’s latent code cwith a softmax function.
In other words, the proposed architecture forces the Generator
to output informative data. For example, when the ciwGAN

network is trained on words from TIMIT, the most informative
way to encode unique information (e.g. a one-hot vector) into
acoustic data is to associate each word with a unique latent
code c. Lexical learning (associating acoustic lexical items with
unique latent representation) thus emerges automatically from
only the requirement that the Generator produce informative
data in a completely unsupervised manner – lexical items are
never labeled or paired during training. Training thus results in
a Generator that learns to output unique words for each latent
code [4].

The addition of the Q-network modifies the training objec-
tive with an additional term of the cross-entropy between the
predicted latent code Q(G(z, c)) and the true latent code c. [4]
adds this additional term to (2):

min
θG,θQ

max
θD

(Ex∼PX
[D(x)]− Ez∼Pz

[D(G(z))]

− λEc∼Pc,z∼Pz
[logQ(G(z, c))]) (3)

where θQ are the parameters of the Q-network,Pc is the distribu-
tion of the latent codes, and λ is a tunable hyperparameter. The
new cross-entropy term acts as a lower bound on the mutual
information between the latent code and generated outputs,
ensuring that the Generator uses informative latent codes in
addition to generating realistic data.

B. Model 1: Bare WaveGAN Trained on a Simple Conditional
Distribution

1) Generator Trained on #TV and #sTV Sequences: First,
we analyze how the three basic acoustic properties of speech are
encoded in CNNs: periodic vibration corresponding to vowels,
aperiodic noise corresponding to fricatives (such as [s]), and
silence corresponding to the closure part of stop consonants. For
this purpose, we perform an analysis on the pretrained Generator
network from [3] on sliced sequences of the structure #sTV
and #TV from TIMIT [51] (where T = /p, t, k/ V = vowel,
# = word edge). Altogether 5,463 data points from TIMIT
were used for training: 4,930 sequences of the structure #TV
(such as [ˈphæ]) and 533 of the structure #sTV (e.g. [ˈspæ]).
We used simplified training materials to facilitate interpretation
of intermediate layers, but the visualization technique proposed
here is scalable to more complex training data too. The network
in [3] was trained for 12,255 steps (approximately 716 epochs).
At this point, the network not only learns to output speech-like
sequences (#TV and #sTV) that resemble training data and are
acoustically analyzable, but also learns the simple conditional
distribution in which aspiration is shortened if [s] is present in
the output ([ˈphæ] vs. [ˈspæ]) [3].

2) Finding Linguistically Meaningful Units: In [3], a tech-
nique is proposed that identifies those latent variables from z
that correspond to some meaningful linguistic representation
in the output, such as presence of [s]. The technique includes
training the network, generating data, and annotating them for
presence of any acoustic or higher level phonological property
(in our case, presence of frication noise of [s] or presence of
reduplication). In [3], annotation is performed manually, but
automated annotations can be employed as well. The data with
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presence or absence of an acoustic property as the dependent
variable and the 100 latent variables as predictors are then fit to
regression models which identify those variables in the latent
space z that most strongly correspond to the presence of the
phonetic or phonological property in question. Based on results
from the regression model, [3] argues that the Generator learns
to represent the presence of [s] with a subset of latent variables
z. Crucially, it is shown that manipulating the variables chosen
with the regression technique results in an almost one-to-one
mapping between individual latent variables and the presence
of [s]. Several generative tests are performed to confirm the
link between individual latent variables and the presence of
some linguistically meaningful unit. [3] proposes that by ma-
nipulating individual variables to levels well outside of training
range (i.e. well outside the interval (−1, 1), which are called
marginal levels henceforth) to values such as ±15, we can force
[s] to surface (or not surface) in the output at near categorical
levels [3], [4]. The value ±15 was chosen because the output
does not change substantially with values higher than ±15. The
range of z-values that yield informative outputs during linear
interpolation differ across models and likely depends on the
number of training data points and diversity of the data (as
differences in [11], [52] suggest).

Manipulating individual latent variables to marginal values
well outside of the training range to create a high occurrence
of a desired linguistic unit [3] is a crucial concept used in this
paper. This technique reveals that the Generator learns to use
the latent space as a discretized representation of linguistically
meaningful units. For example, using regression techniques, 7
variables zi out of the 100 in the latent space are identified in [3]
that strongly correspond to presence of [s] in the output. These
variables are learned during training and will vary with different
training trajectories for the same model. The eleventh variable
z11 is one such variable that strongly corresponds to presence
of [s]. By setting z11 to −1 (within the training range), we get
a modest increase of [s]-containing sequences in the output. By
setting it to −15, 87% of outputs contain an [s]; by setting it to
−25, there are 96% such outputs [3].

Beguš [3] shows that in the model trained on #TV and #sTV
sequences, linearly interpolating z11 from marginal values re-
sults in a gradual reduction of frication noise in the output until
[s] ceases from the output; the frication noise of [s] appears to
be directly causally connected with z11. To linearly interpolate
a variable from marginal values, we generate a set of linearly
spaced points along the interval between the marginal values
and set the variable to each of those values. Fig. 9 (bottom right)
shows how linearly interpolating z11 from 5 (corresponding to
absence of [s] in the output) to −15 (corresponding to presence
of [s] in the output) results in the gradual appearance and then
increase of frication noise (corresponding to [s]) in the generated
output. In [3], it is shown that direct correlations between single
latent variables and the amplitude of frication noise of [s] in the
output operate across generated samples and persists even when
the amplitude is measured proportionally to the vocalic ampli-
tude. In sum, there is a causal relationship between individual
latent variables identified with the proposed technique [3] and
linguistically meaningful properties of the output.

Fig. 3. Values of feature maps (concatenated on the y-axis) after ReLU acti-
vation in four convolutional layers for a uniformly distributed z-vector limited
to the training interval (−1, 1). The visualizations illustrate how activations in
the previous layers result in a clearly analyzable periodic vocalic structure in the
fourth convolutional layer (Conv4 on the zoomed-in graph) that in turn results
in a periodic vocalic vibration in the output.

C. Model 2: Deeper WaveGAN Trained on LibriSpeech

In order to test how intermediate representations vary across
model size and application and how the proposed technique
scales up to larger models trained on larger corpora, we ad-
ditionally train a deeper WaveGAN model [46]. For the purpose
of this paper, we increase the depths of both the Generator
and Discriminator networks from 4 intermediate convolutional
layers to 9 intermediate layers. All other parts of the model
architecture were unaltered. The exact dimensionalities of each
layer are described in Supp. Materials Table I.

We train the model on 559,992 tokens of 508 words sliced
from the LibriSpeech corpus [53] for 34,577 steps, after which
mode collapse was observed. These words were chosen by dis-
carding the 78 most common words that appeared disproportion-
ately more frequently in LibriSpeech train-clean-360 (ranging
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Fig. 4. All feature maps averaged after ReLU activation after the third convolu-
tional layer (conv3; green), fourth convolutional layer (conv4; dark orange) and
the generated output (output; purple). (top) A generated output when z11 = −5
featuring a period of frication [s], a period of silence (of a stop consonant), and a
vocalic period. To overlay the two convolutional layers on top of the output, they
are multiplied by 7 and 10, respectively. (middle) A period of vocalic periodic
vibration with the same latent space values as above, but z11 set at -1 and conv3
and conv4 multiplied by 7 and 14, respectively, to overlay the convolutional
layers on top of the output. (bottom) A period of frication (in [s]) with the same
latent space values as above, but z11 set at −11 and conv3 and conv4 multiplied
by 7 and 10, respectively, to overlay the convolutional layers on top of the output.

from 5,290 to 224,173 tokens per word), and arbitrarily choosing
the next 508 most frequent words (571 to 5,113 tokens per word).

D. Model 3: CiwGAN Trained on an Identity-Based Pattern

The conditional allophonic distribution described in
Section III-B is computationally among the simplest processes
in human languages. To test whether the technique for interpre-
tation of intermediate layers extends to computationally more
complex processes in language, we apply the technique to a pre-
trained ciwGAN model on an identity-based pattern (copying)
called reduplication (in [52]).

Fig. 5. All feature maps averaged after ReLU activation after the third con-
volutional layer (conv3; green), fourth convolutional layer (conv4; dark orange)
and the generated output (output; purple). (top) A generated output when c2 = 1.
To overlay the two convolutional layers on top of the output, they are multiplied
by 65 and 14, respectively. (bottom) Zoomed-in generated output when c2 = 1.

Fig. 6. (top) F0 values in normalized time (10 intervals) in 25 randomly
generated outputs for the final output (Out) and fourth convolutional layer
(Conv4), grouped in five bins (1-5) for presentational purposes. The values were
extracted using the Praat software [55] with a script by Xu [54]. The window
for F0 range was set to 60-300 Hz for the analysis. (bottom) Intensity values
(in dB) in normalized time (10 intervals) in 25 randomly generated outputs for
the final output (Out) and fourth convolutional layer (Conv4). The values were
obtained as described for F0 (the minimum pitch for intensity is 100 Hz).
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Fig. 7. F0 values in normalized time (40 intervals) in 30 randomly generated outputs (15 for each code; 38 vocalic periods total) for the final output (Out) and
third convolutional layer (Conv3), grouped in five bins (1-5) for presentational purposes. The values were extracted using the Praat software [55] with a script by
Xu [54]. The window for F0 range was set to 75–450 Hz for the analysis. Values below 250 Hz and above 325 Hz are excluded from the plot.

Fig. 8. Spectrograms (0–2000 Hz) of (top) the final generated output of a
reduplicated form [taˈthajə] (from the ciwGAN architecture when c1 = 0 and
c2 = 1; transcribed by the authors) and (bottom) of the same reduplicated form
with c1 = 0 and c2 = 1, but from the fourth convolutional layer (averaged
across the feature maps after ReLU activation).

The advantage of the ciwGAN architecture is that learning
of linguistically meaningful units emerges from the require-
ment that the Generator outputs informative data. To test how
learning of a highly complex process such as reduplication
self-emerges in this architecture, [52] trains the ciwGAN net-
work with one-hot latent code of length 2 on 996 bare and
reduplicated items (e.g. [ˈphɑli] and [p2ˈphɑli]). The bare and
reduplicated forms are never paired in the training data and are
presented randomly. The model is trained for 15,920 steps (or
approximately 5,114 epochs). The Generator learns to associate
the latent code with reduplication: when latent code (one-hot
vector with two levels) is set to marginal levels of 5 [5, 0], the
Generator outputs 98% unreduplicated bare forms; when it is set
to [0, 5], it outputs 87% reduplicated forms [52]. When the values
are linearly interpolated, the Generator gradually turns a bare
unreduplicated form into a reduplicated form (e.g. from [ˈphiru]
to [pəˈphiru] [52]) in approximately 50% of outputs that undergo
the change from bare to reduplicated (25% of total outputs).
Fig. 10 (bottom right) shows how manipulating categorical latent
variable c2 results in the gradual appearance of a reduplicated

syllable in the output. The network also learns to extend the
learned pattern to unobserved data and reduplicates forms with
initial consonants that were withheld from training [52]. For
example, by simultaneously forcing reduplication and [s] in the
output (setting the latent variables to marginal levels beyond
training range), the network outputs [səˈsiji], although [səˈsiji]
and all [s]-containing reduplicated forms were withheld from
training data (the network only sees unreduplicated [s]-initial
words such as [ˈsiji]). These results [52] strongly suggest that
the Generator learns to represent a linguistically meaningful
and computationally highly complex process (reduplication or
copying) with the latent codes in a fully unsupervised manner.

In [3], [4], [11], [52], we only analyze and interpret the
endpoints of these models: the latent variables and the generated
outputs. Here, we propose that intermediate convolutional layers
can be interpreted using this technique as well.

IV. INTERPRETATION

We propose that learned representations in the intermediate
layers can be evaluated by combining two techniques: (i) aver-
aging across feature maps in each layer after ReLU activation
(as in [32]; Sections IV-A through IV-C) and (ii) manipulating
individual z variables to marginal values well outside the training
range (as in [3]; Section IV-D).

Averaging across feature maps yields interpretable time-series
data at each convolutional layer that shows how features are
encoded in each layer [32]. In short, for each convolutional layer
C ∈ {Conv1, Conv2, Conv3, Conv4}, we perform the averag-
ing operation (from [32])

1

‖C‖
‖C‖∑

i=1

Ci (4)

where Ci is the ith feature map of layer C and ‖C‖ is the total
number of feature maps in C. This yields a time series that
summarizes the information encoded at each layer.

To evaluate the causal relationship between individual latent
variables and the convolutional layers, the z variables can be
linearly interpolated from marginal endpoints outside of the
training range. The proposed technique reveals which features
in the intermediate layers get activated when manipulating in-
dividual latent variables z and which linguistically meaningful
variables (such as duration, F0, intensity, or formant structure)
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get encoded at which layers. For a particular dimension of the
latent noise z, we interpolate linearly between two extreme
values and observe changes in the intermediate representations.
For example, to test the 11th dimension of the latent space z11 as
it changes from−5 to 5, we freeze the rest of the latent space and
vary z11 through the values −5,−4.5,−3, . . . , 3, 4.5, 5 (linear
interpolation with a constant interval of 0.5), observing the
Generator’s outputs and intermediate representations at every
step.

This approach also allows us to follow how linear interpola-
tion of individual latent variables z (such as z11) that correspond
to some meaningful linguistic unit (such as presence of [s] or
reduplication) affect individual feature maps in each convolu-
tional layer (Section IV-E).

A. Model 1: WaveGAN [46]

Fig. 3 plots values of each feature map (concatenated along
the y-axis) for a z that is uniformly distributed on the training
interval (−1, 1) across all variables. The visualization illustrates
the structure of the Generator. At the fourth convolutional layer,
a clear periodic structure of the vocalic part is visible. The most
common technique of visualizing CNNs — a simple concatena-
tion of feature maps — does not provide the most interpretable
results in speech beyond these basic observations.

Averaging across all feature maps as in (4) results in highly
interpretable time-series data. Fig. 4 plots the third (Conv3)
and fourth (Conv4) convolutional layers, averaged across all
feature maps after ReLU activation along with the correspond-
ing waveform output that can be transcribed as involving a
fricative [s], a stop, and a vowel (#sTV). Overlaying the last
two convolutional layers with the generated output reveals that
the fourth convolutional layer includes information for all three
major acoustic properties of the output: we observe a period of
aperiodic vibration corresponding to the frication noise (in [s]),
a period of silence corresponding to the closure portion of the
consonant (T) and a clear periodic vibration corresponding to
the vowel (V). The timing of these constituents in Conv4 aligns
almost perfectly with the generated output.

The fourth layer (Conv4) carries both the fundamental fre-
quency (F0) and formant structure information in the vocalic
part of the input. Fig. 4 (middle) clearly shows that the averaged
fourth convolutional layer after ReLU contains periodic vibra-
tion with the fundamental frequency that matches the output
as well as higher-frequency vibration that corresponds to the
formant structure in the output. Amplitude/intensity information
also appears to be encoded in the fourth layer — Conv4 closely
traces the actual output in the final layer.

To quantify these observations, we randomly generate 25 out-
puts from the bare WaveGAN model trained on #TV and #sTV
sequences [3] and convert outputs from intermediate layers to
waveforms ready for acoustic analysis.2 We manually annotate
the vocalic period in the final output and perform acoustic

2As the intermediate layers are all positive, we clip all values greater than 1
to be equal to 1 in the waveform outputs. We then treat the signal as a float32
signal and convert it to a. wav file. We also upsample the intermediate layers to
16 kHz sampling with linear interpolation.

analysis of the outputs in the third and fourth convolutional
layers (Conv3 and Conv4).

1) Duration: We manually annotate periodic vibration in the
fourth convolutional layer and compare vowel durations in the
25 generated outputs between the final output and the fourth
convolutional layer. The vocalic durations are easily identifiable
in Conv4 and nearly identical to the vocalic duration in the
final output. Durations from the two layers fit to a linear model
reveal a high degree of correlation (β = 0.96, t = 30.31, p <
0.0001) with adjusted R2 = 0.97 (Supp. Materials Fig. 17). In
the averaged Conv3-output, the difference between the periodic
vibration characteristic of vowels and other acoustic properties,
such as silence (characteristic of stops) or frication noise (char-
acteristic of fricatives and aspiration), are not clearly visible (see
Fig. 9 and Supp. Materials Fig. 20).

Based on these results, we can conclude that vocalic duration
and periods of silence corresponding to stop closure are most
strongly encoded in the fourth convolutional layer (Conv4) in
the model trained on #TV and #sTV sequences.

2) F0: To test how the Generator encodes the fundamental
frequency (F0), we extract F0 values from the manually an-
notated vocalic period in the 25 randomly generated outputs.3

The Conv4 outputs are noisy and limited to positive values,
which is why extraction of F0 can be challenging. F0 values
are extracted using Praat script by Xu [54] with the range of F0
set to 60–300 Hz for the analysis. Fig. 6 shows the 50 extracted
values (25 for each layer). Several F0 trajectories are almost
identical between the final layer and Conv4. A correlation test
of concatenated values between the two layers (Conv4 and out-
put) reveals a substantial correlation with r = 0.53 (Pearson’s
product-moment correlation henceforth, marked with r). The
correlation is calculated on all outputs together with no levels
for individual outputs (here and in the following cases).

Fig. 4 suggests that F0 is likely also encoded in Conv3. The
Conv3 layer shows peaks that correspond to vocalic periodic
vibration. However, with the relatively weak signal, F0 contours
are difficult to extract from the Conv3 of a model that is trained
with relatively few steps. For further discussion on F0, see
Section IV-C2.

3) Intensity: To test whether and how intensity is encoded
in Conv4 (as observed in the qualitative analysis in Fig. 4), we
extract intensity values from annotated vocalic periods (using
the script by Xu [54] in Praat [55] with 100 Hz minimum pitch
and annotated in the final output layer). Fig. 6 illustrates that the
intensity values of Conv4 are lower compared to the final output,
but there is a substantial correlation between concatenated values
of intensity in the two layers: r = 0.62. Lower absolute values of
the intensity levels are expected as the Conv4 layer only includes
positive values and there is no reason for the network to match
intensity values in absolute terms across the layers.

We also correlate intensity levels between the third convolu-
tional layer (Conv3) and the final output. Because vocalic period
is not clearly encoded in Conv3, we use annotations of the

3For the purpose of analyzing F0 and intensity, we use annotations of the
vocalic period from the final output (Out) also for the analysis of F0 and intensity
in the third and fourth convolutional layers (Conv3 and Conv4).
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vocalic period from the final output. There is a modest corre-
lation in intensity values between Conv3 ant the final output:
r = 0.39. Fig. 9 also suggests that intensity (or amplitude enve-
lope) is encoded in Conv4, Conv3, and perhaps even in Conv2
when individual latent variables are manipulated to marginal
values.

B. Model 2: Deeper WaveGAN [46]

To test how the proposed technique scales up to larger models
and how linguistically meaningful properties are encoded across
the convolutional layers in deeper models, we focus on F0 en-
coding in the Deeper WaveGAN model trained on LibriSpeech.

To test encoding of F0, we manually annotate 25 randomly
generated outputs for periodic vocalic vibration in the final layer.
F0 values in both the final layer as well as in higher convolutional
layers are extracted based on the annotations from the final
layer. Ten F0 values are measured for each instance of vocalic
vibration. We extract F0 values from Conv6, Conv7, Conv8, and
Conv9 and compare them to extracted values from the final layer
(Out).

Pearson’s product-moment correlation reveals a high degree
of correlation between Conv9 and output: r = 0.85. This value
is even higher than the correlation in the 5-layer WaveGAN,
despite it being trained on substantially more data points. With
each subsequent layer, the correlation gets smaller (r = 0.73 for
Conv8, r = 0.25 for Conv7, and r = 0.15 for Conv6). Supp. Ma-
terials Fig. 18 illustrates a high correlation in F0 between Conv9
and output and a substantially lower correlation between Conv6
and output (plots for Conv7 and Conv 8 are in Fig. 19 in
Supp. Materials). We observe a similar trend in the deeper
model as in the original WaveGAN: there is a steep drop in
correlation estimates in F0 encoding between Conv9 and Conv8
vs. Conv7 and Conv6. If we consider the layers in the 10-layer
model as a doubled 5-layer model, Conv9 and Conv8 together
correspond to Conv4, while Conv7 and Conv6 correspond to
Conv3. In the 5-layer model, there was a substantial drop in
correlation estimates between Conv4 and Conv3, similarly to
what we observe in the 10-layer model.

C. Model 3: CiwGAN [4]

Visualization of intermediate layers in Fig. 10 suggests that
lower-frequency properties such as acoustic envelope are en-
coded in earlier convolutional layers and that properties with
frequencies higher than acoustic envelope (such as F0 or formant
structure) get added on top of the envelope outline in the later
layers. To quantify this observation, we perform correlation
analysis on the ciwGAN model. The ciwGAN model captures
longer time frames of periodic vibration with more variable
acoustic envelopes compared to the WaveGAN model because
the training data involve words longer than a single syllable. The
ciwGAN model also contains a more complex linguistic process
— reduplication (see Section I for a discussion on complexity).
We analyze the encoding of acoustic envelope (intensity) and F0
through all convolutional layers (Conv1-4 and the final output).
We show that intensity is encoded in both the earlier layers
and well into the deepest layers with high correlation estimates,

whereas F0 gradually appears in later layers. Formant structure
is encoded only in the final layer (it cannot even be tested in
earlier layers).

We generate 30 random outputs, 15 each for the two values of
the code variables ([0, 1] and [1, 0]). We extract F0 and intensity
values over the entire periodic vibration of an output (all voiced
sounds) based on authors’ manual annotations. For example,
in an output transcribed by the authors as [ˈbɑli], the F0 and
intensity values are extracted from all sounds, because they are
all voiced.4

1) Intensity: Intensity appears to be strongly encoded at all
convolutional layers. Contrary to the analysis in Section IV-A3,
intensity values in this model span not only a single vowel but
often multiple vowels and voiced consonants (both sonorants
and stops). Correlation between the concatenated final output
values and averaged Conv4 values are high: r = 0.82 (Fig. 21 in
Supp. Materials). The correlation between the output and aver-
aged values from the third, second, and first convolutional layers
is slightly smaller, but nevertheless relatively high: r = 0.72 for
Conv3, r = 0.63 for Conv2, and r = 0.44 for Conv1.

2) F0: Outputs from the ciwGAN model suggest that F0 is
already encoded in the fourth convolutional layer, similarly to
what is suggested in the bare WaveGAN model. The extracted F0
values often suffer from doubling and halfing errors, but there is
still a correlation between F0 in the output and in the fourth
convolutional layer (Conv4): r = 0.55. The ciwGAN model
also suggests that the F0 is at least partly encoded already in
the third convolutional layer (Conv3), but not earlier than that.
Fig. 7 plots all extracted F0 values from the final output and
the third convolutional layer. There is a moderate correlation
in F0 between the averaged Conv3 layer and the final output
(r = 0.40). In earlier layers, correlation is very low: r = 0.10
for Conv 2 and r = −0.02 for Conv1 (despite the window for
F0 being lowered to 5-150 Hz).

Each convolutional layer is limited in what acoustic informa-
tion it can encode directly as raw time series data by the Nyquist
frequency: the layer’s dimensions need to be at least twice the
frequency of the acoustic property that needs to be encoded.
For example, convolutions higher than the third layer (Conv3)
cannot encode F0 in a non-abstract way: with a dimension of
only 256, its Nyquist frequency is only 128 Hz. It is of course
possible that different F0 values and trajectories are encoded
in an abstract reduced representation in higher convolutions as
well as in the latent space, but they cannot be encoded directly
with frequency encoding. In principle, acoustic properties could
be encoded with a quotient of frequency. For example, F0 could
be encoded with halved values (F0/2) to satisfy the Nyquist
frequency. However, based on the experiment presented here,
this does not appear to happen as correlations (invariant to
quotient frequencies) are very low in earlier layers.

3) Formants: To test how formants are encoded in the Gen-
erator network, we extract the first and second formant values

4For reduplicated outputs interrupted by a stop, we extract the values sepa-
rately for each periodic vibration, which totals in 38 analyzed periods from 30
outputs.
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Fig. 9. Averaged values across feature maps after ReLU activation in the first (top left), second (top middle), third (top right), fourth (bottom left) convolutional
layer, and the final waveform output (bottom right). For each convolutional layer, the graph represents 11 averaged values after ReLU activation where z11 is
linearly interpolated from -15 to 5 (with interval of 2) while all other 99 latent z variables are held constant and limited to the training interval (-1,1) with uniform
distribution. All outputs except in the final layer are upsampled with linear interpolation to total 16,384 samples (y-axis) to match the audio waveform output.
Representation of the third, fourth, and final layer were cut off at 6100th sample because higher samples featured mostly silence. The figures illustrate how linearly
interpolating z11 from 5 to -15 results in appearance of sound [s] in the final output and how representation of [s] is encoded across the layers.

F1 and F2 (using script FormantPro by Xu and Gao [56] in
Praat [55]).

The relationship in formant values between the output and
Conv4 is complex. First, formants are relatively challenging
to estimate, even in clean human acoustic data, let alone in
generated data or in intermediate convolutional layers. Second,
while the fourth convolutional layer clearly features formant
structure, the relationship between Conv4 and the final output
is not straightforward. Fig. 8 illustrates this relationship. The
spectrogram of the output [təˈthɑjə] in Conv4 reveals a clear
formant structure (Fig. 8) but the actual formant values only
partially overlap with the final output layer.

To quantify this observation, we analyze formant values of the
38 periods with vocalic vibrations in normalized time and test
the correlation between the fourth convolutional layer and the
final output. The strongest correlation between the final output
and the fourth layer appears to be in values of the second formant
(F2): r = 0.40 (Fig. 22 in Supp. Materials). In some outputs in
the fourth convolutional layer (Conv4), F2 values match the final
output layer both in the absolute values and in trajectories, but
there also exist substantial deviations between the two layers. F2
is in a few cases already above the Nyquist frequency for Conv4
(2,048 Hz). F1, on the other hand, does not appear to be faithfully
encoded in Conv4: a correlation test between the output and
Conv4 suggest a negative correlation for F1 (r = −0.38).

D. Interpolation

Results of the quantitative acoustic analysis of intermediate
convolutional layers in Section IV-A through IV-C reveal how
and where the Generator encodes different acoustic properties.
To interpret how linguistically meaningful representations in the

latent space translate into spikes in activation in the intermediate
layers, we use the proposal in Beguš [3] and linearly interpolate
individual latent variables to marginal levels well outside the
training range.

We linearly interpolate values of z11 in the bare WaveGAN
model and values of the latent code c1 and c2 in the ciwGAN
model. We generate outputs by linearly interpolating z11 in the
WaveGAN model from−15 to 5 (with interval of 2), and observe
the resulting generated output for each value of z11. This results
in 11 outputs per each convolutional layer (55 total). All other 99
latent variables remain constant across all outputs. The effects
of this interpolation are similar across all sets. One such set
of the five convolutional layers from the bare WaveGAN on
TIMIT with interpolated values in the latent space is plotted in
Fig. 9. The final output layer illustrates how an output without
[s] gradually transforms into an output with [s] as z11 is linearly
interpolated towards the negative values which represent the
presence of [s].

The advantage of the technique proposed in [3] is that we
can observe the causal effect of individual latent variables on
the output at each convolutional layer by analyzing averaged
ReLU activations. Fig. 9 illustrates how the linear interpolation
of z11 results in spikes of four values in the first convolutional
layer. These four spikes increase as the values of z11 decrease,
to the exclusion of other variables at this layer. It is likely
the case that at the first layer (Conv1), the discretized abstract
representation of [s] in the latent space transforms into spikes
of a subset of values. At this point, the transformation is still
highly abstract. In the second convolutional layer (Conv2), the
spikes transform into a more detailed representation of what
corresponds to frication noise of [s] in the final output layer.
The differentiation between the frication noise and periodic
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Fig. 10. Averaged values across feature maps after ReLU activation in the first (top left), second (top middle), third (top right), fourth (bottom left) convolutional
layer, and the final waveform output (bottom right). At the values [0, 0] the final output layer can be transcribed as [ˈdɑji]. At the values of the latent code [0.625, 0],
the output can be transcribed as [dəˈdaj]; at the value [1, 0] [təˈthɑjə]. For each convolutional layer, the graph represents 9 averaged values after ReLU activation
where c2 is linearly interpolated from 0 to 2 (with interval of 0.25) while c1 is set to 0 and all other 98 latent z variables are held constant and limited to the training
interval (-1,1) with uniform distribution. All outputs except in the final layer are upsampled with linear interpolation to total 16,384 samples (y-axis) to match the
audio waveform output. Representation of the third, fourth, and final layer were cut off at 6100th sample because higher samples featured mostly silence. The
figures illustrate how linearly interpolating c2 from 0 to 2 results in appearance of reduplication and how reduplication is encoded across the layers.

Fig. 11. Individual feature maps averaged over 500 instances of #sTV and 500 instances of #TV, clustered using spectral clustering. All feature maps exhibit an
initial spike corresponding to the presence of a [s]-frication. However, the first cluster (red) has comparatively low activation after the initial spike, while the second
cluster (green) exhibits subsequent spikes that correspond to the rest of the sequence. These clusters were found with spectral clustering described in Section IV-E1.

vocalic vibration becomes clearer in the third convolutional layer
(Conv3). The increasing amplitude of the period corresponding
to frication noise (compared to the vocalic period) as the values
of z11 approach −15 suggests that the four spikes in values from
Conv1 transform into precursors of frication noise and that linear
interpolation of the individual latent variable z11 representing
[s] amplifies primarily the frication period throughout the four

layers and the final output. There is thus a causal relationship
between z11 and precursors of the frication noise at each con-
volutional layer. Visualization of the linear interpolations in the
fourth layer (Conv4) also suggests that this layer encodes all
major acoustic properties: frication noise, period of silence, and
vocalic vibration as well as F0 and intensity of the periodic
vocalic vibration.
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Fig. 12. The same clusters from Fig. 11 averaged for a particular example of
#TV (top, z11 = 5) and #sTV (bottom, z11 = −15), and plotted against the
final output. Cluster 1 is much less activated than Cluster 2 in the #TV output,
but becomes highly activated in exactly the region corresponding to [s] in the
#sTV output.

To interpret linear latent code interpolation in the ciwGAN
model trained on reduplication, we create a similar set: we
manipulate the latent code from [0, 0] to [0, 2] with interval
of [0, 0.25], thus creating 9 outputs per convolutional layer (45
total). One such set is chosen for visualization, but the effects of
linear interpolation are similar across all sets. All other 98 latent
variables z remain constant across all outputs.

Interpretation of linearly interpolated intermediate layers in
the ciwGAN model is more complex because the phonological
process the model is trained on — reduplication (or copying) —
is computationally highly complex (see Section I). The first con-
volutional layer shows less discretized representations than in
the #sTV model. Interpolation from [0, 0] to [0, 2] (correspond-
ing to presence of reduplication) seems to activate a few spikes
for the main vowel and reduplicant vowel, but less categorically
so than in the #sTV model. Averaged ReLU activations with
linearly interpolated codes in Fig. 10 suggest that the latent code
representing a computationally complex process results in the
formation of two vocalic periods, interrupted by a consonantal
element that appears identical on both sides of the reduplicated
vowel (the copying principle). Visualizations also show that
the period of silence (or reduced amplitude) corresponding to
stop closure is encoded well into the third convolutional layer.
Intensity (or acoustic envelope) appears to be encoded through
all the convolutional layers.

E. Individual Feature Maps and Interpolation

1) Individual Feature Maps: In addition to the averaged
feature maps at each layer, we also attempt to identify how
linguistically meaningful properties are encoded separately in
individual feature maps. Individual feature maps tend to be
highly sporadic, with the same feature map possibly encoding
different properties for distinct outputs even when the outputs
have similar properties. However, there do exist some broad
patterns across different generated outputs.

To identify these patterns for specific properties (such as
presence of [s]), we generate a large number of outputs (N =
1000). Half of the outputs have been manipulated (using the

latent space) so that the feature of interest ([s]) is present, and the
other half have been manipulated so that the feature is absent.
We perform this manipulation because the distribution of the
Generator outputs without manipulation may have an uneven
balance of the property we are interested in. All of the activations
for these outputs are then averaged across each individual feature
map. This creates a broad “activation profile” for each filter
across a variety of outputs. Clustering is then performed on these
activation profiles to identify broad patterns of activation.

Specifically, we perform this analysis on the fourth convolu-
tional layer of the WaveGAN model (Section III-B), generating
1000 total outputs, 500 of which have z11 set to -15, and 500 of
which have z11 set to 15. After averaging across feature maps,
we perform spectral clustering, using the radius basis function
kernel with a kernel coefficent of 1× 10−10 to construct the
affinity matrix, and clustering using k-means where k = 2. The
results are shown in Fig. 11.

We see two broad distributions of activations: one in which
there is a spike of activation near the beginning of the waveform
and relatively low activation afterwards, and another in which
we see additional spikes afterwards. We interpret the large single
spike in the former category to correspond with the presence of a
[s] frication, and determine these feature maps to encode almost
exclusively for the presence of [s]. The latter category we take
to also encode for [s], but which in addition is responsible for
the rest of the #sTV sequence. Indeed, when we average these
clusters separately for particular examples of generated outputs
with and without the [s] frication in Fig. 11, we see that the first
cluster is activated weakly compared to the second in the absence
of [s] (z11 = 5; Fig. 11 top). In the presence of [s] (z11 = −15;
Fig. 11 bottom), we see activations from both clusters in the area
corresponding to the [s]-frication, but weaker activations from
the first cluster in the rest of the #sTV sequence.

2) Interpolation: We can also analyze and interpret indi-
vidual feature maps by linearly interpolating individual latent
variables with linguistically meaningful representations. Fig. 13
illustrates four “raw” feature maps with linearly interpolated
values of z11 (in blue) and their corresponding final output layer
(in gray). The four feature maps were chosen as those in which
the distance between the feature map when z11 is −15 and each
corresponding feature map when z11 is interpolated is smallest
(according to cosine distance).

Individual feature maps show several parallels to the averaged
values discussed in Section IV-D. By manipulating individual
variables with linguistically meaningful representations (such
as z11), we can follow the causal effects of those variables
on individual feature maps. Fig. 13 illustrates that individual
feature maps transform marginal z11 values into spikes in few
values in Conv1. At Conv3, the z11 transforms into a less abstract
representation of frication noise that substantially increases in
amplitude as the values of z11 approach −15. At Conv4, we
see differentiation into periods of frication noise, silence, and
periodic vocalic vibration. Again, linear interpolation results in
increased amplitude of the frication noise.

Visualization of individual feature maps combined with linear
interpolation of individual linguistically meaningful latent vari-
ables thus allows us to explore whether individual feature maps
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Fig. 13. Sets of individual feature maps after ReLU with minimal changes as
determined by cosine distance from the values when z11 = −15. The feature
maps are plotted at three convolutional layers: Conv1 (top), Conv3 (middle),
Conv4 (bottom). Values of z11 are linearly interpolated from −15 to 5 with
interval of 2 for each convolutional layer and featue map (while other 99 z
variables are kept constant).

separately encode different phonetic properties (e.g. frication
noise, silence, or periodic vocalic vibration).

Exploration of individual feature maps (Figs. 11 and 13) re-
vealed no specific divergences in how linguistically meaningful
units are encoded between individual maps and the summation
of all values across the time domain, except that individual
feature maps are highly sporadic if analyzed separately. This
suggests that the summation technique proposed in this paper
is representative of the properties that each layer encodes as
a whole, and is useful for analyzing which acoustic properties
are broadly encoded at which layers. Further work is needed

to test whether individual maps encode additional information
in higher layers and whether linguistically meaningful units are
encoded not as time-series but as absolute values (for evidence
of the latter, see [32]).

V. DISCUSSION

This paper proposes a set of techniques to interpret and
visualize outputs at intermediate transpose convolutional layers
in CNN decoders (the Generator) trained on waveforms in an
unsupervised manner. We argue that averaging across feature
map values after ReLU activations yields interpretable time
series data that summarizes encodings of phonetic features at
each convolutional layer in the Generator network. This allows
us to use standard acoustic phonetic measurements to test what
properties of speech are encoded at what layer.

A. Acoustic Properties Across Layers

Acoustic analyses suggest that many acoustic properties are
encoded in the final convolutional layer before output (Conv4
or Conv9 in the deeper model). This layer features a clear
period of frication noise (aperiodic vibration), a period of silence
(corresponding to closure in voiceless stops) and a period of
periodic vibration with some formant structure. Duration of
the vocalic period is also faithfully encoded in the final layer:
periodic vibration between Conv4 and final output align almost
perfectly. Visualizations in Fig. 4 suggest that timing of other
major acoustic properties (frication noise and silence) is also
highly aligned between Conv4 and final output. Acoustic anal-
ysis of the final convolutional layer also suggests that F0 and
intensity values (or acoustic envelope) are faithfully encoded in
this layer.

Differences in the acoustic properties between the two models
— the bare WaveGAN and ciwGAN — suggest that the degree
to which individual acoustic properties are encoded at various
intermediate layers can differ somewhat across the models. The
two models probed here differ in the number of training steps
(12,255 in WaveGAN vs. 15,920 in ciwGAN), the amount of
training data (5,463 total in the WaveGAN model vs. 996 total in
the ciwGAN model), and consequently in the number of epochs
(717 vs. 5,114). The structure of the Generator is identical
across the models, except that in the ciwGAN architecture, the
generator takes the latent code c in addition to the latent variables
z as its input. The ciwGAN model trained on a computationally
more complex process with substantially more epochs appears
to encode formant structure in the fourth convolutional layer
(Conv4) more faithfully than the bare WaveGAN model trained
on #sTV. While the relationship between the formant structure in
Conv4 and the actual output is complex, the fourth convolutional
layer does feature a clear formant structure which is at least partly
correlated with the final output (in F2 values).

The third convolutional layer in the 5-layer model is substan-
tially more limited in what it can encode: with 1024 data points,
its Nyquist frequency is 512 Hz. Formant structure is expectedly
limited, but F0 and especially intensity data are encoded in this
layer.
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Analysis of earlier layers (Conv1 and Conv2) and visualiza-
tions in Fig. 10 suggest that intensity (acoustic envelope) is
attested well into the second and even first convolutional layer
in the ciwGAN model. It appears that the acoustic envelope
gets encoded in the earliest layers and that acoustic information
with higher frequencies (such as F0 and formant structure) is
gradually built on top of the envelope in later layers.

B. A Causal Relationship Between the Latent Space and
Intermediate Layers

Combining the proposed interpretation technique with ma-
nipulation and linear interpolation of individual latent variables
illustrates how individual variables in the latent space affect the
activations at individual convolutional layers. Generating data
with interpolated individual latent variables allows us to identify
which activations in intermediate convolutional layers increase
or decrease most substantially with interpolation, thus identify-
ing a causal relationship between individual latent variables and
activations in intermediate layers.

We can also probe individual feature maps by manipulating
and linearly interpolating individual latent variables. The effects
of linear interpolation on individual feature maps is similar to
its effect on the averaged values (Section IV-E).

Analysis of individual feature maps by manipulation of the
latent space also suggests that different acoustic features (such
as aperiodic frication noise or periodic vocalic vibration) can
be encoded in separate feature maps. Clustering in Section IV-
E1 suggests that some feature maps activate the frication part
more strongly when the latent variable corresponding to [s] is
manipulated to marginal levels, while in others the vocalic period
is activated more strongly.

C. Applications, Limitations, and Future Directions

With the proposed technique, we can analyze which acoustic
properties are encoded in which intermediate convolutional lay-
ers. ASR and speech synthesis systems overwhelmingly include
convolutional neural networks, at least in initial layers. Recently,
there has been a shift towards using ASR/synthesis systems
directly from raw waveforms [45]. Additionally, ASR increas-
ingly involves unsupervised models, and recently a GAN-based
approach has been proposed for unsupervised ASR with no
labeled data required [44]. Our proposal allows visualization and
interpretation of transpose convolutional layers in a GAN-based
unsupervised model that operates from raw waveforms. While
most CNNs in ASR systems involve windows shorter than 1 s
(as in our case), we choose to apply the proposed technique to
longer windows in order to test the encoding of not only acoustic
properties, but also of higher-level phonological processes (such
as reduplication). Understanding how phonological processes
are encoded will be increasingly important as unsupervised
speech technology systems become available in languages with
substantially more (and more complex) phonological processes
than English. Finally, our proposal allows exploration of the
causal relationship between individual latent variables and in-
termediate convolutional layers by manipulating and linearly
interpolating latent variables to values outside of the training

range. Exploring causal relationships in deep learning models is
a growing area in machine learning research.

We apply the proposed technique to two GAN models trained
on limited and curated data, because the latent space can be
highly interpretable in GANs [3], [4], [52]. We also limit our
discussion on the Generator (decoder) network (for interpre-
tation of the classifier network, see [32]). These GAN-based
models, while capable of both speech synthesis and speech
classification [4], are not usually employed in most current
ASR/synthesis applications. The results from the deeper model
(Section III-C) trained on LibriSpeech, however, suggest that
the proposed technique can be scaled to larger models and that
similar (but more distributed) encoding emerges in intermediate
layers of deeper models as well. Future directions should involve
applying the proposed technique to ASR and TTS models that
involve CNN layers (e.g. wav2vec 2.0 [42]). Similar approaches
can also be utilized on any CNN-based decoder (such as [57]) as
well as on VAEs, which are often used in unsupervised speech
technologies [35], [36], [37], [58]. Like GANs, VAEs involve
upsampling from a latent space (whether distributed or as a
codebook) with a decoder model similar to a Generator. The
combination of intermediate convolutional layer visualization
and interpolation of individual variables can provide insights
into learning in VAEs as well.

In this paper, we also limit our discussion on the most salient
acoustic properties (intensity, F0, and formant structure). Other
properties such as acoustic correlates of gender, dialects, race,
or socioeconomic background can be probed with the same
techniques as well.

The interpretation and visualization technique can serve also
as a diagnostic for improving the performance of CNNs trained
on speech. The interpretation suggest that several acoustic prop-
erties relevant to speech perception (especially the formant struc-
ture of vowels) is encoded only in the final layer (of the 5-layer
models), primarily because the Nyquist frequency does not allow
properties with higher frequencies to be directly encoded as a
time-series property (i.e. with frequency encoding) earlier in the
structure of the Generator network. This suggests that introduc-
ing more layers capable of encoding properties with higher fre-
quencies might improve performance of the model. Testing this
hypothesis is left for future work. The proposed technique can
also be applied to unsupervised acoustic classifiers. [32] apply it
to intermediate layers in the Q-network and additionally propose
that both shapes and absolute values of learned representations
can be inferred with non-linear regression.

The proposed technique can also serve for direct (albeit
superficial) comparisons between intermediate convolutional
layers and neural activity in the brain [59]. A few parallels
are immediately available: the output at the fourth convolu-
tional layer (Conv4) resembles the complex auditory brain stem
response when subjects are presented with acoustic vocalic
stimuli (as in [60]). Also, parallel to the intensity values (or
acoustic envolope) which are encoded high in the structure
of the convolutional network (up to the second and even first
convolutional layer in the ciwGAN), the acoustic envelope is
encoded relatively high in the brain as well (in the auditory
cortex; [61]). The advantage of the proposed technique is that
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it outputs time-series data and enables testing of which acoustic
properties are encoded at which layers. This information can be
used for comparison between the convolutional networks and
various neuroimaging techniques (which also output time-series
data).
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