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Interpreting intermediate convolutional layers of
CNNs trained on raw speech

Gašper Beguš and Alan Zhou

Abstract—This paper presents a technique to interpret and
visualize intermediate layers in CNNs trained on raw speech
data in an unsupervised manner. We show that averaging over
feature maps after ReLU activation in each convolutional layer
yields interpretable time-series data. The proposed technique
enables acoustic analysis of intermediate convolutional layers. To
uncover how meaningful representation in speech gets encoded
in intermediate layers of CNNs, we manipulate individual latent
variables to marginal levels outside of the training range. We
train and probe internal representations on two models — a bare
WaveGAN architecture and a ciwGAN extension which forces the
Generator to output informative data and results in emergence
of linguistically meaningful representations. Interpretation and
visualization is performed for three basic acoustic properties of
speech: periodic vibration (corresponding to vowels), aperiodic
noise vibration (corresponding to fricatives), and silence (corre-
sponding to stops). We also argue that the proposed technique
allows acoustic analysis of intermediate layers that parallels
the acoustic analysis of human speech data: we can extract
F0, intensity, duration, formants, and other acoustic properties
from intermediate layers in order to test where and how CNNs
encode various types of information. The models are trained
on two speech processes with different degrees of complexity: a
simple presence of [s] and a computationally complex presence
of reduplication (copied material). Observing the causal effect
between interpolation and the resulting changes in intermediate
layers can reveal how individual variables get transformed into
spikes in activation in intermediate layers. Using the proposed
technique, we can analyze how linguistically meaningful units in
speech get encoded in different convolutional layers.

Index Terms—convolutional neural networks, interpretability,
speech, GANs

I. INTRODUCTION

How deep convolutional neural networks learn their internal
representations is one of the central questions in machine
learning. The vast majority of work on this topic is centered on
the visual domain. Here, we propose a technique to visualize
and interpret the intermediate layers of deep convolutional
neural networks trained on speech in an unsupervised man-
ner. There are several advantages of interpreting intermediate
layers in CNNs that are trained on speech over those trained
on visual data.

First, humans process speech by discretizing the contin-
uous physical properties of sound into discrete mental rep-
resentations called phonemes. A long tradition of scientific
study of phonetics and phonology ([1], [2]) has resulted in
a relatively good understanding of how humans represent
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continuous properties in speech with such discrete phonemes.
The main objective of CNNs trained on speech is similar to the
discretization process in human phonology: the networks are
trained to represent raw continuous data with discrete labeled
categories. Speech data, combined with the study of human
phonology, thus provides a highly interpretable testing ground
for probing how learned representations emerge in deep neural
networks, as well as in humans acquiring language.

Second, speech data contains multiple local and non-local
dependencies with different degrees of computational com-
plexity that are well-documented and well-understood. For
example, changing or adding a single sound to a word can
result in a change in meaning. For example, the English word
pit ["phIt] has a very different meaning from spit ["spIt]. Two
processes occur here. First, the addition of the sound [s]
changes the meaning of the word. Second, the stop consonant
is produced with aspiration (puff of air marked by h) in
the first word with no preceding [s], but without aspiration
in the second word with preceding [s]. This contextually
conditioned complementary distribution (between [ph] and [p])
is computationally simple, but this is not true for all pro-
cesses in human speech. For example, many natural languages
feature an identity-based process called reduplication which
requires phonological material to be copied from the output.
A reduplicated form of the base [para] is [papara], where the
first consonant and the first vowel [pa] in the base [para] are
repeated (copied), which results in [papara]. Reduplication is
computationally challenging [3], [4], because learners need to
copy phonological material from the base: [pa] is the prefix
only for the bases starting with [pa] such as [para]. For other
bases (such as [tara] or [mura]), the reduplication morphemes
that fulfill exactly the same function are substantially different:
[ta] and [mu]. We can use these well-understood dependencies
with different degrees of computational complexity to test
what internal representations are learned from raw continuous
data by CNNs and how they are learned, as well as which
acoustic properties get encoded at which convolutional layer.

Finally, an advantage of interpreting CNNs trained on
speech is that behavioral and acquisitional data is easy to
obtain for speech. We can directly compare developmental
stages in child language acquisition with stages of CNNs
trained on speech [5], or use the same data to train human
subjects and CNNs [6]. Outputs of the proposed technique
can also be directly compared with human neuroimaging data,
which contains time-series data of electrical activity similar to
our outputs, obtained by recording different parts of the brain
with various neuroimaging techniques.
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II. PRIOR WORK

Visualizing convolutional layers is performed primarily on
models trained on visual data [7], with considerably less
work focused on the visualization of convolutional layers of
the models trained on speech [8], [9], [10], [11]. Work on
unsupervised models such as GANs has primarily been carried
out on image data, and has been successful in identifying
relationships in the latent space [12], as well as intermedi-
ate representations of various generated classes [13]. These
approaches often leverage techniques specific to the visual
domain, such as attribute prediction and image segmentation.

Substantially less work exist on interpreting convolutional
layers trained on speech, the majority of which operates on
supervised models. The majority of proposals focus on inter-
preting and visualizing filters. The SincNet proposal [14] visu-
alizes filters, and by imposing restrictions on filters, achieves
better performance on an ASR task compared to unrestricted
CNNs. Huang et al. [8] likewise focus on visualizing filters of
convolutional layers from supervised models trained for ASR
tasks. In [15], [16], [9], several visualization techniques are
applied and topographic filter maps are visualized from su-
pervised ASR models trained on spectrograms. The proposed
techniques can highlight important regions for ASR tasks in
CNNs. [17] analyzes activations in deep neural networks and
correlates them with fMRI data.

Palaz et al., Muckenhirn et al., and Golik et al. ([18], [19],
[20], [21], [22], [23]) also analyze learned filters at different
convolutional layers. In [23], Muckenhirn et al. analyze filters
of CNN models for ASR tasks, but trained on raw waveforms.
They also visualize estimated F0 contours based on filters
in the first convolutional layer [23]. Analysis of the filters
can, for example, reveal which frequency bands various filters
target. This can in turn reveal what types of acoustic data
are encoded at which convolutional layers. However, the
proposed techniques yield less directly interpretable outputs.
For example, this technique does not allow a directly analysis
of waveforms from individual convolutional layer that directly
correspond to some phonetic element in the final output layer.

In [10], Muckenhirn et al. propose a gradient-based vi-
sualization technique for CNNs trained on raw waveforms
(based on [24]) which yields relevance maps from the input
signal that can be acoustically analyzed (a similar proposal
that uses relevance maps is in [11]). Their models are trained
on supervised tasks: phone or speaker identification. Similar
to our technique, their proposal enables analysis of acoustic
properties (such as formant values and F0) in CNNs on a
time-series data. Their method, however, does not focus on
analyzing which acoustic information is encoded at what
layer and do not directly test effects of individual latent
variables on convolutional layers. Additionally, they focus on
spectral analyses as they argue that “[v]isualization in the
time domain does not bring much insights into what important
characteristics are extracted by the network because the results
are difficult to interpret, as we do not have any visual cues
as in the case of images”. This paper argues that averaged
ReLU activations of feature maps combined with manipulation
and interpolation of individual linguistically meaningful latent

variables yield highly interpretable time-series data.
Here, we propose a different approach from the existing

proposals outlined above. Rather than analyzing convolutional
layers in a supervised model or analyzing filters, our proposal
focuses on the activations of intermediate transpose convolu-
tions of a Generator network that was trained on speech in a
GAN framework. Whereas traditional convolutions are usually
used to downsample preexisting data into lower-dimensional
representations, transpose convolutions work in reverse, up-
sampling from a low-dimensional latent representation in order
to generate new data. This causes some key differences in
the structure of our intermediate layers, with the highest-level
representations appearing in the deepest layers of the network.

Our proposal brings several aspects that facilitate the in-
terpretability of the activations of these intermediate convo-
lutional layers: (i) manipulating and interpolating individual
latent variables well beyond training range, (ii) averaging over
feature maps to get intermediate time-series data, (iii) training
in an unsupervised manner, and (iv) operating directly with
time-series data.1 Below we outline why each of these aspects
is important. One of the main difficulties with interpreting
convolutional layers in supervised ASR models is that it is not
trivial to elicit or amplify activations given that the network
takes raw data as inputs and outputs some classification.
We propose an interpretable alternative by manipulating and
interpolating individual latent variables that have linguistic
meaning to values outside of training range in the Generator
network. The generative and unsupervised aspect of the GAN
framework make this technique possible: the Generator does
not take raw data as inputs, but rather generates data. This
means we can manipulate the latent space and observe causal
effects of individual meaningful variables on intermediate
layers.

Here we build on a proposal [5] that individual latent
variables can be manipulated to marginal levels well outside
the training range and that linear interpolation can reveal the
causal relationship between individual variables and meaning-
ful linguistic representations. The majority of proposals on
CNN interpretability, known to the authors, do not manipulate
individual latent variables. We claim that the main advantage
of this approach is precisely interpretability: we can observe
how individual variables with some linguistic function get
transformed throughout the convolutional layers while keeping
the rest of the latent space z constant.

We also interpret and visualize intermediate convolutional
layers in a fully unsupervised manner — in the GAN frame-
work. The majority of ASR models using CNNs are super-
vised. The advantage of interpreting intermediate layers on
unsupervised models is that the final reduced representation
layer is not trained on a classification problem with a softmax
function, but is connected to a uniformly distributed random
variables (or a combination of binary and uniformly distributed
random variables) that get transformed to data in the final
layer. This means that we can analyze self-organization of
meaningful representations in intermediate convolutional lay-

1Other propsals also operate with raw waveforms (see above).
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ers and directly observe effects of individual variables in the
latent space on intermediate representations.

The same technique can also be applied to variational
autoencoders (VAEs) trained on speech ([25], [26], [27], [28],
[29], [30], [31]), but GANs are chosen because they are
unsupervised not only in the encoding task, but also in the
generative task and as such even more suitable for generating
novel outputs. Unlike in VAEs, the generator of a GAN
never directly accesses the training data. In other words, the
generation aspect of VAEs is supervised — the network is
trained on generating replicates of data and thus both its sub-
parts, the encoder and the decoder, have direct access to the
input data. In the GAN architecture, the generation aspect is
fully unsupervised: the Generator needs to learn to generate
data from noise without directly accessing the training data.

Finally, the output of the proposed technique is directly
interpretable time-series data. Our proposal requires no further
processing of the outputs: the proposed technique results in
time-series data from each convolutional layer that directly
correspond to the waveform output in the final layer. Many
proposals (with the notable exceptions outlined above) operate
with spectrograms; the advantage of analyzing waveforms
directly is that no information is lost during the transformation
between spectrogram and waveform, and waveforms allow for
any acoustic analysis of the intermediate convolutional layer
and of the final output. Here, we extract four acoustic prop-
erties from intermediate layers (duration, intensity, F0, and
formant values) and correlate them to the final output in order
to test how and in which layers does the Generator network
encode various acoustic properties. Finally, waveforms can
be directly played to participants in potential psycholinguistic
experimental applications. In other words, spectral analysis is
always available to raw waveforms, but converting spectro-
grams into raw waveforms is more challenging.

III. MODELS

The interpretation and visualization of individual layers
is performed on the Generator network in two models:
WaveGAN [32] and ciwGAN [33]. WaveGAN is a single-
dimensional transformation of the DCGAN architecture [34]
used for audio data. The architecture includes the Generator
and the Discriminator networks. The Generator takes 100
latent variables z uniformly distributed in the interval (−1, 1)
and transforms them into 16,384 data points constituting just
over 1 s of audio file (sampled at 16 kHz) through five
convolutional layers. All layers except for the last one are
trained with ReLU activation (tanh in the last layer). The
dimensions are summarized in Figure 1. The Discriminator
network takes real and generated audio files (16,384 data
points constituting audio file) and estimates the Wasserstein
distance between real data and generated outputs (according to
the proposal in [35] with gradient penalty [36]). The Generator
is trained on minimizing this distance, while the Discriminator
is trained on maximizing it.

A. Bare WaveGAN on a simple conditional distribution
First, we analyze how the three basic acoustic properties of

speech are encoded in CNNs: periodic vibration corresponding
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Fig. 1. The architecture of the Generator network with five one-dimensional
convolutional layers as proposed in [32] and used for training in this paper.
Filters are one-dimensional with the size of 25 [32].

to vowels, aperiodic noise corresponding to fricatives (such
as [s]), and silence corresponding to the closure part of stop
consonants. For this purpose, we perform an analysis on the
Generator network trained in [5] on sliced sequences of the
structure #sTV and #TV from TIMIT [37] (where T = /p,
t, k/ V = vowel, # = word edge). Altogether 5,463 data
points from TIMIT were used for training: 4,930 sequences
of the structure #TV (such as ["phæ]) and 533 of the structure
#sTV (e.g. ["spæ]). We used simplified training materials to
facilitate interpretation of intermediate layers, but the visual-
ization technique proposed here is scalable to more complex
training data too. The network was trained for 12,255 steps
(approximately 716 epochs) [5]. At this point, the network not
only learns to output speech-like sequences (#TV and #sTV)
that resemble training data and are acoustically analyzable,
but also learns the simple conditional distribution in which
aspiration is shortened if [s] is present in the output (["phæ]
vs. ["spæ]).

In [5], we propose a technique to identify those latent
variables from z that correspond to some meaningful linguistic
representation, such as presence of [s], using a combination
of shrinkage techniques, linear and non-linear regression,
and random forest. We argue that the Generator learns to
represent presence of [s] with a subset of latent variables
z. Crucially, we show that manipulating the variables chosen
with the regression technique results in an almost one-to-one
mapping between individual latent variables and presence of
[s]. We perform several generative tests to confirm the link
between individual latent variables and the presence of some
linguistically meaningful unit, such as [s]. We propose that
by manipulating individual variables to marginal levels well
outside of training range (i.e. well outside the interval (−1, 1))
to values such as ±15, we can force [s] to surface in the output
at near categorical levels [5], [33].

Manipulating individual latent variables to marginal values
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well outside of the training range to create a high occurrence
of a desired linguistic unit is a crucial concept used in this
paper. This technique reveals that the Generator learns to use
the latent space as a discretized representation of linguistically
meaningful units. For example, using regression techniques,
we identify 7 variables zi out of the 100 in the latent space
that strongly correspond to presence of [s] in the output.
The eleventh variable z11 is one such variable that strongly
corresponds to presence of [s]. By setting z11 to -1 (within
the training range), we get a modest increase of [s]-containing
sequences in the output. By setting it to -15, 87% of outputs
contain an [s]; by setting it to −25, there are 96% such outputs.
Other linguistically meaningful units including morphological
items (such as affixes) have been shown to be encoded with
discretized representations. For example, in [6], we show that
the network learns to represent a prefix of the shape V(N)-
(where V = a vowel and N = a nasal consonant, e.g. On-
) in a highly discretized manner. The network is trained on
prefixed and unprefixed forms (e.g. ["phOôO] and Om-"phOôO]).
The analysis of the latent space reveals a substantial spike
in regression estimates for a single variable corresponding to
the presence of the prefix: x16. When this variable is set to
−4.5 (outside of training range), 100% of outputs contain a
prefix; when it is set to the opposite 4.5, 99% of outputs lack
a prefix [6]. Linear interpolation between the two marginal
values results in a linear shift between prefixed and unprefixed
forms.[6]

Similarly, we show that, in the model trained on #TV and
#sTV sequences, interpolating z11 from marginal values results
in a gradual reduction of frication noise in the output until [s]
ceases from the output. The frication noise of [s] appears to
be directly causally connected with z11. Figure 13 shows how
interpolating z11 from 5 (corresponding to absence of [s] in
the output) to −15 (corresponding to presence of [s] in the
output) results in the gradual appearance and then increase
of frication noise in the generated output. In [5], it is shown
that direct correlations between single latent variables and the
amplitude of frication noise of [s] in the output operate across
generated samples and persists even when the amplitude is
measured proportionally to the vocalic amplitude. In sum, we
argue that there is a causal relationship between individual
latent variables identified with the proposed technique [5] and
linguistically meaningful properties of the output.

B. CiwGAN on an identity-based pattern

The conditional allophonic distribution described above
is computationally among the simplest processes in human
languages. To test whether the technique for interpretation of
intermediate layers extends to computationally more complex
processes in language, we apply the technique to the ciwGAN
model trained on an identity-based pattern (copying) called
reduplication. The ciwGAN architecture differs from the bare
WaveGAN in that it includes a Q-network [33]. The Generator
takes as input categorical code variables c in addition to
the latent variables z. The code variables constitute a one-
hot vector. The Q-network is in structure identical to the
Discriminator except in its final layer. The Q-network takes

x̂ =

Time (s)
0 0.8352

-0.834

0.8546

0

Generator
network

G(z)

Latent space
98 random variables (z)

z3−100 ∼ U(−1, 1)

2 features (cat. variables) φ

φ =
φ1 φ2
0 1
1 0

Q network

Estimates φ̂
[φ1,φ2]

x =

Time (s)
0 0.7593

-0.1664

0.1236

0

Discriminator
network

D(x)

Training data

996 unpaired bare
and reduplicated items

CiVjCV
CiVjCiVjCV

Generated
or real?

Backpropagation

BackpropagationBackpropagation

Fig. 2. The ciwGAN architecture as proposed in [33] used for interpreting
intermediate layers in Section IV-B. Figure taken from [38].

as input the Generator’s outputs and estimates the latent code
c used by the Generator. The Q-network and the Generator
are trained to maximize the Q-network’s success rates (the
architecture is summarized in Figure 2). In other words, the
proposed architecture forces the Generator to output informa-
tive data. For example, when the ciwGAN network is trained
on words from TIMIT, the most informative way to encode
unique information (e.g. a one-hot vector) into acoustic data
is to associate each word with unique latent code c. Lexical
learning thus emerges automatically from only the requirement
that the Generator produce informative data in a completely
unsupervised manner – lexical items are never labeled during
training. Training thus results in a Generator that learns to
output unique words for each latent code [33].

The advantage of the ciwGAN architecture is that learning
of linguistically meaningful units emerges from the require-
ment that the Generator outputs informative data. To test how
learning of a highly complex process such as reduplication
self-emerges in this architecture, we train the ciwGAN net-
work (in [38]) with one-hot latent code of length 2 on 996
bare and reduplicated items (e.g. ["phAli] and [p2"phAli]). The
model is trained for 15,920 steps (or approximately 5,114
epochs). The Generator learns to associate the latent code with
reduplication: when latent code is set to marginal levels of 5 [5,
0], the Generator outputs 98% unreduplicated forms; when it
is set to [0, 5], it outputs 87% reduplicated forms [38]. When
the values are interpolated, the Generator gradually turns a
bare unreduplicated form into a reduplicated form (e.g. from
["phiôu] to [p@"phiôu] [38]). Figure 14 shows how manipulating
categorical latent variable c2 results in the gradual appearance
of a reduplicated syllable in the output. The network also
learns to extend the learned pattern to unobserved data and
reduplicates forms with initial consonants that were withheld
from training. For example, by simultaneously forcing redu-
plication and [s] in the output (setting the latent variables to
marginal levels beyond training range), the network outputs
[s@"siji], although [s@"siji] and all [s]-containing reduplicated
forms were withheld from training data (the network only
sees unreduplicated [s]-initial words such as ["siji]). These
results strongly suggest that the Generator learns to represent a
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linguistically meaningful and computationally highly complex
process (reduplication or copying) with the latent codes in a
fully unsupervised manner.

In [5], [33], [38], [6], we only analyze and interpret the
endpoints of these models: the latent variables and the gen-
erated outputs. Here, we propose that intermediate convolu-
tional layers can be interpreted using this technique as well.
We argue that by manipulating individual latent variables to
marginal values and interpolating from those marginal values,
we can reveal how individual variables in the latent space
z cause spikes in activations in intermediate layers and how
linguistically meaningful units get represented throughout the
convolutional layers.

IV. INTERPRETATION

We propose that learned representations in the intermediate
layers can be evaluated by combining two techniques: (i) aver-
aging across feature maps in each layer after ReLU activation
(Sections IV-A and IV-B) and (ii) manipulating individual z
variables to marginal values well outside the training range
(Section IV-C). To evaluate the causal relationship between
individual latent variables and the convolutional layers, the z
variables can be interpolated from marginal endpoints outside
of the training range. The proposed technique reveals which
features in the intermediate layers get activated when manip-
ulating individual latent variables z and which linguistically
meaningful variables (such as duration, F0, intensity, or for-
mant structure) get encoded at which layers.

This approach also allows us to follow how interpolation
of individual latent variables z (such as z11) that correspond
to some meaningful linguistic unit (such as presence of [s] or
reduplication) affect individual feature maps in each convolu-
tional layer (Figure IV-D).

A. Model 1: WaveGAN [32]

The Generator network is a five-layer 1D deep convo-
lutional network. The dimensions of the five convolutions
are 512 × 64 × 1, 256 × 256 × 1, 128 × 1024 × 1, and
64 × 4096 × 1. The final layer (with tanh activation) has a
dimension of 16384×1×1 that constitutes just over 1 second
of audio waveform (16 kHz sampling). The architecture is
summarized in Figure 1. Figure 3 plots values of each feature
map (concatenated along the y-axis) for a z that is randomly
distributed on the training interval (−1, 1) across all variables.
The visualization illustrates the structure of the Generator. At
the fourth convolutional layer, a clear periodic structure of
the vocalic part is visible. The most common technique of
visualizing CNNs — a simple concatenation of feature maps
— does not provide the most interpretable results in speech
beyond these basic observations.

We propose that averaging across all feature maps results in
highly interpretable time-series data. Figure 4 plots the third
(Conv3) and fourth (Conv4) convolutional layers, averaged
across all feature maps after ReLU activation along with the
corresponding waveform output that can be transcribed as in-
volving a fricative [s], a stop, and a vowel (#sTV). Overlaying
the last two convolutional layers with the generated output
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Fig. 3. Values of feature maps (concatenated on the y-axis) after ReLU
activation in four convolutional layers for a uniformly distributed z-vector
limited to the training interval (−1, 1). The visualization illustrate dimensions
of convolutional layers in the Generator network. The visualizations illustrate
how activations in the previous layers result in a clearly analyzeable periodic
vocalic structure in the fourth convolutional layer (Conv4 on the zoomed-in
graph) that results in a vowel in the output.

reveals that the fourth convolutional layer includes information
for all three major acoustic properties of the output: we
observe a period of aperiodic vibration corresponding to the
frication noise (in [s]), a period of silence corresponding to
the closure portion of the consonant (T) and a clear periodic
vibration corresponding to the vowel (V). The timing of these
constituents in Conv4 aligns completely with the generated
output.

The fourth layer (Conv4) carries both the fundamental fre-
quency (F0) and formant structure information in the vocalic
part of the input. Figure 4 (middle) clearly shows that the
averaged fourth convolution after ReLU contains periodic
vibration with the fundamental frequency that matches the
output and higher-frequency vibration that corresponds to the
formant structure in the output. There appears to be also the
amplitude/intensity information in the fourth layer — Conv4
closely traces the actual output in the final output layer.
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Fig. 4. All feature maps averaged after ReLU activation after the third
convolutional layer (conv3; green), fourth convolutional layer (conv4; dark
orange) and the generated output (output; purple). (top) A generated output
when z11 = −5 featuring a period of frication [s], a period of silence (of a
stop consonant), and a vocalic period. To overlay the two convolutional layers
on top of the output, they are multiplied by 7 and 10, respectively. (middle) A
period of vocalic periodic vibration with the same latent space values as above,
but z11 set at -1 and conv3 and conv4 multiplied by 7 and 14, respectively,
to overlay the convolutional layers on top of the output. (bottom) A period
of frication (in [s]) with the same latent space values as above, but z11 set
at -11 and conv3 and conv4 multiplied by 7 and 10, respectively, to overlay
the convolutional layers on top of the output.

To quantify these observations, we randomly generate 25
outputs from the bare GAN model trained after 12,255 steps
on #TV and #sTV sequences and convert outputs from inter-
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Fig. 5. All feature maps averaged after ReLU activation after the third
convolutional layer (conv3; green), fourth convolutional layer (conv4; dark
orange) and the generated output (output; purple). (top) A generated output
when c2 = 1. To overlay the two convolutional layers on top of the output,
they are multiplied by 65 and 14, respectively. (bottom) Zoomed-in enerated
output when c2 = 1.

mediate layers to waveforms ready for acoustic analysis.2 We
manually annotate the vocalic period in the final output and
perform acoustic analysis of the outputs in the third and fourth
convolutional layers (Conv3 and Conv4).

1) Duration: We manually annotate periodic vibration in
the fourth convolutional layer and compare vowel durations
of the 25 generated outputs between the final output and the
fourth convolutional layer. The vocalic durations are easily
identifiable in Conv4 and nearly identical to the vocalic
duration in the final output. Durations from the two layers
fit to a linear model reveal a high degree of correlation
(β = 0.96, t = 30.31, p < 0.0001) with adjusted R2 = 0.97.
Figure 7 illustrates the correlation. In the averaged Conv3-
output, the difference between the periodic vibration charac-
teristic of vowels and other acoustic properties, such as silence
(characteristic of stops) or frication noise (characteristic of
fricatives and aspiration), are not clearly visible. Figure 6
plots three averaged Conv3 layers and the vocalic period
annotated from the corresponding output of the final layer.
Figure 13 additionally shows that in Conv3, the period of

2As the intermediate layers are all positive, we clip all values greater than
1 to be equal to 1 in the waveform outputs. We then treat the signal as a
float32 signal and convert it to a .wav file. We also upsample the intermediate
layers to 16 kHz sampling with linear interpolation.
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Fig. 6. Averaged outputs in the third convolutional layer (Conv3) after ReLU
activation with vocalic periods (labeled with V) annotated from the final
output.
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Fig. 7. Correlation in duration (in seconds) of vocalic periods between the
generated output in the final layer (Out on x-axis) and fourth convolutional
layer (Conv4 on y-axis).

silence corresponding to the stop consonant between the [s]
and the vowel in #sTV sequences is not encoded as strongly
as in Conv4 when the values of individual latent variables are
interpolated.

Based on these results, we can conclude that vocalic du-
ration and periods of silence corresponding to stop closure
is most strongly encoded in the fourth convolutional layer
(Conv4) in the model trained on #TV and #sTV sequences.

2) F0: To test how the Generator encodes the fundamental
frequency (F0), we extract F0 values from the annotated vo-
calic period in the 25 randomly generated outputs.3 The Conv4
outputs are noisy and limited to positive values, which is why

3For the purpose of analyzing F0 and intensity, we use annotations of the
vocalic period from the final output (Out) also for the analysis of F0 and
intensity in the third and fourth convolutional layers (Conv3 and Conv4).
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Fig. 8. (top) F0 values in normalized time (10 intervals) in 25 randomly
generated outputs for the final output (Out) and fourth convolutional layer
(Conv4). The values were extracted using the Praat software [39] with a script
by Xu [40]. The window for F0 range was set to 60-300Hz for the analysis.
(bottom) Intensity values in normalized time (10 intervals) in 25 randomly
generated outputs for the final output (Out) and fourth convolutional layer
(Conv4). The values were obtained as described for F0 (the minimum pitch
for intensity is 100 Hz).

extraction of F0 can be challenging. The range of F0 is set to
60–300 Hz for the analysis. Figure 8 shows the 50 extracted
values (25 for each layer). Several F0 trajectories are almost
identical between the final layer and Conv4. A correlation
test of concatenated values between the two layers (Conv4
and output reveals a substantial correlation with R2 = 0.53
(Pearson’s product-moment correlation).

Figure 4 suggests that pitch is likely also encoded in
Conv3. Conv3 layer shows peaks that correspond to vocalic
periodic vibration. However, with the relatively weak signal,
F0 contours are difficult to extract from the Conv3 of a model
that is trained with relatively few steps. For further discussion,
see Section IV-B1 on F0 in Conv3 in a model trained with
more steps.

3) Intensity: To test whether and how intensity is encoded
in Conv4 (as observed in the qualitative analysis in Figure
4), we extract intensity values from annotated vocalic periods
(using the the script by Xu [40] in Praat [39] with 100 Hz
minimum pitch). Figure 8 illustrates that the intensity values
of Conv4 are lower compared to the final output, but there is a
correlation between concatenated values of intensity in the two
layers: R2 = 0.62. Lower overall values of the intensity levels
are expected as the Conv4 layer only includes positive values
and there is no reason for the network to match intensity values
in absolute terms across the layers. The measure of interest
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here is independent of absolute values: we are interested in
intensity trajectories, which do show a substantial correlation
between Conv4 and the final output.

Since intensity is easier to extract from noisy data (com-
pared to F0), we also correlate intensity levels between the
third convolutional layer (Conv3) and the final output. Because
vocalic period is not clearly encoded in Conv3, we use
annotations of the vocalic period from the final output. There
is a modest correlation in intensity values between Conv3 ant
the final output: R2 = 0.39. Figure 13 also suggests that
intensity (or amplitude envelope) is encoded in Conv4, Conv3,
and perhaps even in Conv2 when individual latent variables
are manipulated to marginal values.

B. Model 2: CiwGAN [33]

To test which acoustic properties are encoded most strongly
in which convolutional layer in the ciwGAN model trained
on an identity-based pattern – reduplication, we generate 30
random outputs, 15 each for the two values of the code
variables ([0, 1] and [1, 0]). To evaluate acoustic properties
over longer time frames of periodic vibration, we extract
F0 and intensity values over the entire periodic vibration of
an output (all voiced sounds). For example, in an output
transcribed as ["bAli], the F0 and intensity values are extracted
from all sounds, because they are all voiced.4

1) F0: F0 values are challenging to extract given that
the averaged values after ReLU activations are only positive.
Outputs from the ciwGAN model suggest that F0 is already
encoded in the fourth convolutional layer, similarly to what
is suggested in the bare WaveGAN model. The extracted F0
values often suffer from doubling and halfing errors, but there
is still a correlation between F0 in the output and in the fourth
convolutional layer (Conv4): R2 = 0.55.

The ciwGAN model also suggests that the F0 is at
least partly encoded already in the third convolutional layer
(Conv3). Figure 9 plots all extracted F0 values from the final
output and the third convolutional layer. There is a moderate
correlation in F0 between the averaged Conv3 layer and the
final output (R2 = 0.40), suggesting that the F0 values are at
least in part encoded already in the third convolutional layer.

Convolutions higher than the third layer (Conv3) cannot
encode F0 in a non-abstract way: with a dimension of only
256, its Nyquist frequency is only 128 Hz. It is of course
possible that different F0 values and trajectories are encoded
in an abstract reduced representation in higher convolutions as
well as in the latent space.

2) Intensity: Intensity appears to be strongly encoded both
at the fourth and third convolutional layers. Figure 10 plots all
38 intensity trajectories for periodic vibration in the output and
Conv3 and Conv4. Contrary to the analysis in Section IV-A3,
intensity values in this model span not only a single vowel but
often multiple vowels and voiced consonants (both sonorants
and stops). Correlation between the concatenated final output
values and averaged Conv4 values are high: R2 = 0.82. The

4For reduplicated outputs interrupted by a stop, we extract the values
separately for each periodic vibration, which totals in 38 analyzed periods
from 30 outputs.

correlation between the output and averaged values from the
third convolutional layer is slightly smaller, but nevertheless
relatively high: R2 = 0.72.

3) Formants: To test how formants are encoded in the
Generator network, we extract the first and second formant
values F1 and F2 (using script FormantPro by Xu and Gao
[41] in Praat [39]).

The relationship in formant values between the output and
Conv4 is complex. First, formants are relatively challenging
to estimate, even in clean human acoustic data, let alone in
generated data or in intermediate convolutional layers. Second,
while the fourth convolutional layer clearly features formant
structure, the relationship between Conv4 and the final output
is not straightforward. Figure 11 illustrates this relationship.
The spectrogram of the output [t@"thAj@] in Conv4 reveals a
clear formant structure (Figure 11) but the actual formant
values only partially overlap with the final output layer.

To quantify this observation, we analyze formant values
of the 38 periods with vocalic vibrations in normalized time
and test the correlation between the fourth convolutional layer
and the final output. The strongest correlation between the
final output and the fourth layer appears to be in values of
the second formant (F2): R2 = 0.40. Figure 12 illustrates
this correlation. In some outputs in the fourth convolutional
layer (Conv4), F2 values match the final output layer both
in the absolute values and in trajectories, but there also exist
substantial deviations between the two layers. F2 is in a few
cases already above the Nyquist frequency for Conv4 (2,048
Hz). F1, on the other hand, does not appear to be faithfully
encoded in Conv4: a correlation test between the output and
Conv4 suggest a negative correlation for F1 (R2 = −0.38).

C. Interpolation

Results of the quantitative acoustic analysis of intermediate
convolutional layers in Section IV-A and IV-B reveal how
and where the Generator encodes different acoustic properties.
To interpret how linguistically meaningful representations in
the latent space translate into spikes in activation in the
intermediate layers, we use the proposal in Beguš [5] and
interpolate individual latent variables to marginal levels well
outside the training range.

To test how linguistically meaningful representations are
reflected in intermediate layers, we interpolate values of z11 in
the bare GAN model and values of the latent code c1 and c2 in
the ciwGAN model. We generate outputs by interpolating z11
from −15 to 5 (in increments of 2) which results in 11 outputs
per each convolutional layer (55 total). One such set is chosen
for visualization. The effects of interpolation are similar across
all sets. All other 99 latent variables remain constant across
all outputs. The set with 11 interpolated values across the
five convolutional layers is plotted in Figure 13. The final
output layer illustrates how an output without [s] gradually
transforms into an output with [s] as z11 is interpolated towards
the negative values which represent the presence of [s].

The advantage of the technique proposed in [5] is that we
can observe the causal effect of individual latent variables on
the output at each convolutional layer by analyzing averaged
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Fig. 9. F0 values in normalized time (40 intervals) in 30 randomly generated outputs (15 for each code; 38 vocalic periods total) for the final output (Out)
and third convolutional layer (Conv3). The values were extracted using the Praat software [39] with a script by Xu [40]. The window for F0 range was set
to 75-450 Hz for the analysis. Values below 250 Hz and above 325 are excluded from the plot.
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Fig. 10. Intensity values in normalized time (40 intervals) in 30 randomly generated outputs (15 for each code; 38 vocalic periods total) for the final output
(Out) and fourth convolutional layer (Conv4) (in (a)) and third convolutional layer (Conv3) (in (b)). The values were obtained as described for F0 (the
minimum pitch for intensity is 100 Hz).

ReLU activations. Figure 13 illustrates how the interpolation
of z11 results in spikes of four values in the first convolu-
tional layer. These four spikes increase as the values of z11
decrease, to the exclusion of other variables at this layer. It is
likely the case that at the first layer, the discretized abstract
representation of [s] in the latent space transforms into spikes
of a subset of values. At this point, the transformation is still
highly abstract. In the second convolutional layer (Conv2), the
spikes transform into a more detailed representation of what
corresponds to frication noise of [s] in the final output layer.
The differentiation between the frication noise and periodic
vocalic vibration becomes clearer in the third convolutional
layer. The increasing amplitude of the period corresponding
to frication noise (compared to the vocalic period) as the
values of z11 approach −15 suggests that the four spikes
in values from Conv1 transform into precursors of frication
noise and that interpolation of the individual latent variable

z11 representing [s] amplifies only the frication period to the
exclusion of vocalic period throughout the four layers and the
final output. There is thus a causal relationship between z11
and precursors of the frication noise at each convolutional
layer. Visualization of the interpolations in the fourth layer
(Conv4) also suggests that this layer encodes all major acoustic
properties: frication noise, period of silence, and vocalic
vibration as well as F0 and intensity of the periodic vocalic
vibration.

To interpret latent code interpolation in the ciwGAN model
trained on reduplication, we create a similar set: we manipulate
the latent code from [0, 0] to [0, 2] in increments of 0.25, thus
creating 9 outputs per convolutional layer (45 total). One such
set is chosen for visualization, but the effects of interpolation
are similar across all sets. All other 98 latent variables z
remain constant across all outputs.

Interpretation of interpolated intermediate layers in the
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Fig. 11. Spectrograms (0-2000 Hz) of (top) the final generated output of
a reduplicated form [ta"thAj@] (from the ciwGAN architecture when c1 = 0
and c2 = 1) and (bottom) of the same reduplicated form with c1 = 0 and
c2 = 1, but from the fourth convolutional layer (averaged across the feature
maps after ReLU activation).

ciwGAN model is more complex because the phonological
process the model is trained on — reduplication (or copying)
— is computationally highly complex. The first convolutional
layer shows less discretized representations than in the #sTV
model. Interpolation from [0, 0] to [0, 2] (corresponding to
presence of reduplication) seems to activate a few spikes for
the main vowel and reduplicant vowel, but less categorically
so than in the #sTV model. Intensity (or acoustic envelope)
appears to be encoded through all the convolutional layers.
Averaged ReLU activations with interpolated codes in Figure
13 suggest that the latent code representing a computationally
complex process results in the formation of two vocalic
periods, interrupted by an identical element as the one in the
base (the copying principle). Visualizations also show that the
period of silence (or reduced amplitude) corresponding to stop
closure is encoded well into the third convolutional layer.

D. Individual feature maps and interpolation

1) Individual feature maps: In addition to the averaged
feature maps at each layer, we also attempt to identify how
linguistically meaningful features might be encoded separately
in individual feature maps. Individual feature maps tend to be
highly sporadic, with the same feature map possibly encoding
different features even when the generated output is similar.
However, there do exist some broad patterns across different
generated outputs.

To identify these patterns for specific features, we generate a
large number of different outputs, half of which we manipulate

the latent space so that the feature of interest is present, and
half of which we manipulate so that the feature is absent. Then,
we average the activations together, and perform clustering to
obtain broad categories. We manipulate the generated outputs
because the raw outputs of the generator may have a highly
imbalanced distribution of features.

We perform this analysis on the fourth convolutional layer
of the WaveGAN model (Section III-A), generating 1000 total
outputs, 500 of which have z11 set to -15, and 500 of which
have z11 set to 15. We then perform spectral clustering, using
the rbf kernel with a kernel coefficent of 1×10−10 to construct
the affinity matrix, and clustering using k-means where k = 2.
The results are shown in Figure 15.

We see two broad distributions of activations: one in which
there is a spike of activation near the beginning of the
waveform and relatively low activation afterwards, and another
in which we see two additional spikes afterwards. We interpret
the large single spike in the former category to correspond
with the presence of a [s] frication, and determine these
feature maps to encode almost exclusively for the presence
of [s]. The latter category we take to also encode for [s],
but which in addition is responsible for the rest of the #sTV
sequence. Indeed, when we average these clusters separately
for particular examples of generated words with and without
the [s] frication in Figure 15, we see that the first cluster is
activated very weakly compared to the second in the absence
of [s]. In the presence of [s], we see activations from both
clusters in the area corresponding to the [s]-frication, but only
very small activations from the first cluster in the rest of the
#sTV sequence.

2) Interpolation: . We can also analyze and interpret indi-
vidual feature maps by interpolating individual latent variables
with linguistically meaningful representations. Figure 17 illus-
trates four “raw” feature maps with interpolated values of z11
(in blue) and their corresponding final output layer (in gray).
The four feature maps were chosen as those in which the
distance between the feature map when z11 is −15 and each
corresponding feature map when z11 is interpolated is smallest
(according to cosine distance).

Individual feature maps show several parallels to the av-
eraged values discussed in Section IV-C. By manipulating
individual variables with linguistically meaningful represen-
tations (such as z11), we can follow the causal effects of those
variables on individual feature maps. Figure 17 illustrates
that individual feature maps transform marginal z11 values
into spikes in few values in Conv1. At Conv3, the z11
transforms into a less abstract representation of frication noise
that substantially increases in amplitude as the values of z11
approach −15. At Conv4, we see differentiation into periods of
frication noise, silence, and periodic vocalic vibration. Again,
interpolation results in increased amplitude of the frication
noise.

Visualization of individual feature maps combined with in-
terpolation of individual linguistically meaningful latent vari-
ables thus allows us to explore whether individual feature maps
separately encode different phonetic properties (e.g. frication
noise, silence, or periodic vocalic vibration).
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Fig. 12. F2 values in normalized time (40 intervals) in 30 randomly generated outputs (15 for each code; 38 vocalic periods total) in the final output (Out)
and fourth convolutional layer (Conv4). The maximum formant value was set to 4500 Hz (with 4 as the maximum number of formants and a window of
25ms).

Fig. 13. Averaged values across feature maps after ReLU activation in the first (top left), second (top middle), third (top right), fourth (bottom left) convolutional
layer, and the final waveform output (bottom right). For each convolutional layer, the graph represents 11 averaged values after ReLU activation where z11 is
linearly interpolated from -15 to 5 (in increments of 2) while all other 99 latent z variables are held constant and limited to the training interval (-1,1) with
uniform distribution. All outputs except in the final layer are upsampled with linear interpolation to total 16,384 samples (y-axis) to match the audio waveform
output. Representation of the third, fourth, and final layer were cut off at 6100th sample because higher samples featured mostly silence. The figures illustrate
how interpolating z11 from 5 to -15 results in appearance of sound [s] in the final output and how representation of [s] is encoded across the layers.

V. DISCUSSION

This paper proposes a technique to interpret and visualize
outputs at intermediate convolutional layers in CNNs trained
on raw speech in an unsupervised manner. We argue that
averaging across feature map values after ReLU activations
yields interpretable time series data that summarizes encodings
of phonetic features at each convolutional layer. This allows us
to use standard acoustic phonetic measurements to test what
properties of speech are encoded at what layer.

Acoustic analyses suggest that many acoustic properties are
encoded in the fourth convolutional layer (Conv4). This layer
features a clear period of frication noise (aperiodic vibration),
a period of silence (corresponding to closure in stops) and
a period of periodic vibration with some formant structure.
Duration of the vocalic period is faithfully encoded in Conv4:

periodic vibration between the two layers (Conv4 and final
output) align almost perfectly. Visualizations in Figure 4
suggest that timing of other major acoustic properties (frication
noise and silence) is also highly aligned between Conv4 and
final output. Acoustic analysis of the fourth convolutional
layer also suggests that F0 and intensity values (or acoustic
envelope) are faithfully encoded in this layer.

Differences in the acoustic analysis of the two models —
the bare WaveGAN and ciwGAN — suggest that the degree
to which individual acoustic properties are encoded at various
intermediate layers can differ somewhat across the models.
The two models probed here differ in the number of training
steps (12,255 in WaveGAN vs. 15,920 in ciwGAN), training
data points (5,463 vs. 996), and consequently in the number
of epochs (716 vs. 5,114). The structure of the Generator
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Fig. 14. Averaged values across feature maps after ReLU activation in the first (top left), second (top middle), third (top right), fourth (bottom left) convolutional
layer, and the final waveform output (bottom right). At the values [0, 0] the final output layer can be transcribed as ["dAji]. At the values of the latent code
[0.625, 0], the output can be transcribed as [d@"daj]; at the value [1, 0] [t@"thAj@]. For each convolutional layer, the graph represents 9 averaged values after
ReLU activation where c2 is linearly interpolated from 0 to 2 (in increments of 0.25) while c1 is set to 0 and all other 98 latent z variables are held constant
and limited to the training interval (-1,1) with uniform distribution. All outputs except in the final layer are upsampled with linear interpolation to total 16,384
samples (y-axis) to match the audio waveform output. Representation of the third, fourth, and final layer were cut off at 6100th sample because higher samples
featured mostly silence. The figures illustrate how interpolating c2 from 0 to 2 results in appearance of reduplication and how reduplication is encoded across
the layers.
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Fig. 15. Individual feature maps averaged over 500 instances of #sTV and 500 instances of #TV, clustered using spectral clustering. All feature maps exhibit
an initial spike corresponding to the presence of a [s]-frication. However, the first cluster (red) encodes very little after the initial spike, while the second
cluster (green) has significant activity corresponding to the rest of the sequence.

is identical across the models, except that in the ciwGAN
architecture, the generator takes the latent code c in addition to
the latent variables z as its input. The ciwGAN model trained
on a computationally more complex process with substantially
more epochs appears to encode formant structure in the fourth

convolutional layer (Conv4) more faithfully than the bare
WaveGAN model trained on #sTV. While the relationship
between the formant structure in Conv4 and the actual output
is complex, the fourth convolutional layer does feature a clear
formant structure which is at least partly correlated with the
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Fig. 16. The same clusters from Figure 15 averaged for a particular example
of #TV (top, z11 = 5) and #sTV (bottom, z11 = −15), and plotted against
the final output. Cluster 1 is much less activated than Cluster 2 in the #TV
output, but becomes highly activated in exactly the region corresponding to
[s] in the #sTV output.

final output (in F2 values).
The third convolutional layer is substantially more limited

in what it can encode: with 1024 data points, its Nyquist
frequency is 512 Hz. Formant structure is expectedly limited,
but F0 and especially intensity data is faithfully encoded.
The two tested models (WaveGAN and ciwGAN) also differ
substantially in what is encoded in the third convolutional
layer. Visualizations in Figure 14 suggest that intensity (acous-
tic envelope) is attested well into the second and even first
convolutional layer. Vocalic periods and periods of reduced
amplitude during closure are faithfully encoded in at least
third and fourth convolutional layers in the ciwGAN model
trained on reduplication. This stands in contrast to the bare
WaveGAN, where the periods of vocalic vibration are not
clearly distinguishable in the third convolutional layer (Figure
6).

Combining the proposed interpretation technique with ma-
nipulation and interpolation of individual latent variables with
linguistically meaningful representations illustrates how indi-
vidual variables in the latent space affect the activations at
individual convolutional layers. Interpolating individual latent
variables allows us to identify which activations in interme-
diate convolutional layers increase most substantially, thus
identifying a causal relationship between the latent variables
and activations in intermediate layers.

Averaged feature map values after ReLU activations sum-
marize encodings at each convolutional layer and allow for
standard acoustic analyses of the intermediate outputs. We
can also probe individual feature maps by manipulating and
interpolating individual latent variables. The effects of inter-
polation on individual feature maps is similar to its effect on
the averaged values (Section IV-D).

Interpretation of intermediate stages by manipulating the
latent space also suggests that different acoustic features (such
as aperiodic frication noise or periodic vocalic vibration) can
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Fig. 17. Sets of individual feature maps after ReLU with minimal changes as
determined by cosine distance from the values when z11 = −15. The feature
maps are plotted at three convolutional layers: Conv1 (top), Conv3 (middle),
Conv4 (bottom). Values of z11 are interpolated from −15 to 5 in increments
of 1 for each convolutional layer and featue map (while other 99 z variables
are kept constant).

be encoded in separate feature maps. Clustering in Section
IV-D1 suggests that some feature maps activate the frication
part more strongly when the latent variable corresponding to
[s] is manupulated to marginal levels, while in others the
vocalic period is activated more strongly.

The proposed technique allows several applications. The in-
terpetation and visualization technique can serve as a diagnos-
tic for improving the performance of CNNs trained on speech.
The interpretation suggest that several acoustic properties
relevant to speech perception (especially the formant structure
of vowels) is encoded only in the final layer, primarily because
the Nyquist frequency does not allow properties with higher
frequencies to be encoded earlier in the structure of the
Generator network. This suggests that introducing more layers
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capable of encoding properties with higher frequencies might
improve performance of the model. Testing this hypothesis is
left for future work.

The proposed technique can also serve for direct (albeit
superficial) comparisons between intermediate convolutional
layers and neural activity in the brain. A few parallels are
immediately available: the output at the fourth convolutional
layer (Conv4) resembles the complex auditory brain stem
response when subjects are presented with acoustic vocalic
stimuli (as in [42]). Also, parallel to the intensity values (or
acoustic envolope) which are encoded high in the structure
of the convolutional network (up to the second and even first
convolutional layer in the ciwGAN), the acoustic envelope is
encoded relatively high in the brain as well (in the auditory
cortex) [43]. Detailed tests of parallels are left for future work,
but the advantage of the proposed technique is that it outputs
time-series data and enables testing of which acoustic proper-
ties are encoded at which layers. This information can be used
for comparison between the convolutional networks and vari-
ous neuroimaging techniques (which also output time-series
data). The outputs of the proposed visualization technique
should enable more informative and interpretable comparisons
between the convolutional networks and the brains than only
extracting the networks’ activations and correlating them with
outputs of brain imaging.
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