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1. Introduction

In Optimality Theory (OT; Prince & Smolensky| 1993/2004) and related theories (Har-
monic Grammar: Legendre et al.| 2006, [Pater| 2008, [2009; Maximum Entropy Grammar:
Goldwater & Johnson|2003)), two questions have recently received increased attention in
the literature: (i) how to represent gradient phonotactic restrictions in the grammar (Frisch
et al. 2004} |Anttila 2008, Coetzee & Pater 2008, Wilson & Obdeyn 2016 i.a.), and (ii)
whether and how to represent unnatural processes in the grammar (Hayes||1999, Hyman
2001, Blevins|[2004, Wilson! 2006, [Hale & Reiss|[2004, Samuels| 2009, |Coetzee & Preto-
rius 2010, Hayes & White| 2013, 1.a.). To our knowledge, however, there exists no sys-
tematic treatment of the intersection of these two topics: unnatural gradient phonotactics,
1.e. phonotactic restrictions that, given a particular environment, target a single (segmental)
feature and gradiently favor the value of this feature that is unnatural in that environment.

This paper presents an initial investigation of such unnatural gradient phonotactic re-
strictions: we present the case of a lexically gradient phonotactic restriction that operates
against what would be phonetically natural: Tarma Quechua stop voicing. The paper shows
that the unnatural trend in the lexicon is statistically significant, phonetically real, and
shows clear signs of productivity, with evidence from loanword phonology and from mor-
phophonological alternations. To our knowledge, this is the first report of a (truly) unnatural
gradient phonotactic restriction on segmental structure. The unnatural gradient phonotac-
tics in Tarma Quechua bears theoretical implications: we demonstrate that Harmonic Gram-
mar with CON restricted to natural constraints only allows phonotactic restrictions that are
natural (i.e., those that favor the natural feature value in a given environment), contrary to
what is attested in our data.
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cle at the Massachusetts Institute of Technology, and the Sound Workshop at the University of Massachusetts,
Amberst, for their useful comments. We are especially grateful to Willem Adelaar for his permission to ana-
lyze his Tarma Quechua recordings. All mistakes are, of course, our own.



Begus & Nazarov

2. Unnatural trend in the lexicon
2.1 Stop voicing

Tarma Quechua is a dialect of Quechua (Quechua I) spoken in Tarma district in the Junin
province of Peru. The Quechua dialect continuum almost uniformly has only voiceless
stops in native vocabulary (Adelaar & Muysken 2004). However, Adelaar| (1977) and
Puente Baldocedal (1977) report that some of these voiceless stops have become voiced
in Tarma Quechua (henceforth: TQ). Voiceless non-coronal stops are reported as undergo-
ing voicing in intervocalic and post-consonantal positions, but not after a nasal consonant.
Adelaar (1977) and Puente Baldocedal (1977) note that voicing does not apply categori-
cally (and that it does not apply post-nasally), but no further analyses on the lexicon are
performed. Below we present results of a statistical analysis of the TQ lexicon that reveals a
highly unnatural trend. We adopt the definition of unnatural processes from Begus (2017):
unnatural processes are those that not only lack phonetic motivation, but operate against
some universal phonetic tendency. We show that, in addition to limitations on voicing af-
ter nasals, the relative rates of voicing in various environments, including intervocalic and
post-consonantal positions, contradict several universal phonetic tendencies. This paper, to
our knowledge, is the first report of this unnatural distribution in TQ.

For the purpose of the analysis, we collected all tokens of stops from the vocabulary
list in |/Adelaar (1977)). Because alveolars never undergo voicing, they were omitted from
the analysis — only labials and velars were kept. In addition, word-final stops and the first
members of consonant clusters always surface as voiceless, so they were also excluded
from the analysis. A total of 1199 tokens were collected: 910 tokens were from the native
TQ vocabulary, and 289 are labeled as loans from Spanish in |Adelaar| (1977). The stops
in each data point were annotated for Voicing (present or not), Place of articulation (labial
or velar), and Position (phonological context). The latter variable had five values: word-
initial, post-nasal, intervocalic, post-sonorant, post-obstruent. The initial raw data analysis
reveals a surprising trend: voicing surfaces almost never post-nasally (9.5%), in almost half
of the lexicon intervocalically (42.5%), and almost always post-consonantally, including in
positions after a voiceless obstruent (86.1%)

@)) Voiced vs. voiceless labial and velar stops in Tarma Quechua native vocabulary
across contexts
# N_ V_V R T
voiced 7 7 99 72 68
voiceless 276 67 134 13 11

% voiced 2.5 9.5 425 847 86.1

To test the statistical significance of this trend, we fit a logistic regression model to the
data with the R statistical software (R Core Team|[2017) using the g/m() function. The first

'Unless noted otherwise, we will henceforth designate classes of consonants with the following abbrevi-
ations: T — voiceless obstruent, D — voiced obstruent, N — nasal, R — non-nasal sonorant, V — vowel.
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model includes only native vocabulary. The dependent variable was binary: presence or
absence of voicing; the independent variables were Place of articulation (treatment-coded
with two levels, labial and velar, with labial as the reference level), and Position (treatment-
coded with five levels: initial, post-nasal, intervocalic, post-sonorant, and post-obstruent,
with intervocalic as the reference level) with no interactions. The best fitting model was
chosen with the step-wise backwards model selection technique: higher order interactions
were removed step-wise from a full model. If the likelihood ratio tests (LRTs) determined
an interaction or predictor does not improve fit significantly, they were removed until all
predictors in the model significantly improved the fit.

2) Percent voiced stops 3) Logistic regression model
Bz Pr(>|z])
(Intercept) -0.0 -0.3 0.7952
75+ V_VvsR 20 62 0.0000
- V_Vvs.T 22 6.1 0.0000
S 5. V_Vvs.N_ -19 -45 0.0000
S V_Vvs.#_ -34 -84 0.0000
IS , “velar vs. labial  -0.5 -2.3  0.0191
5 i

4 N_ V.V R T

Position
As shown in this analysis, [+voice] in non-coronal stops is significantly less frequent word
initially and post-nasally compared to intervocalic position. [+voice] is significantly more
frequent in post-sonorant and post-obstruent position compared to intervocalic position in
TQ native vocabulary.

Post-nasal and intervocalic position universally prefer voicing, while voiced stops after
voiceless obstruents are universally dispreferred (see Begus |2018b|and literature therein).
It is thus highly unnatural that TQ exhibits less voicing post-nasally and intervocalically
than after voiceless obstruents (the first members of a consonant cluster never underwent
voicing)E] TQ voicing thus operates in a direction opposite to two universal phonetic ten-
dencies: it operates more frequently where it is dispreferred (post-consonantally) and less
frequently where it is preferred (post-nasally and intervocalically). These findings are sum-
marized in where “context X is dispreferred to context Y is written as X < Y.

4 Unnatural distribution of [+voice]

Universal tendencies for [+voice] | Observed significant trends in TQ
T <V_V V_V<T
T <N __ N_ _<V_V<T

2The analysis shows post-nasal < intervocalic and intervocalic < post-obstruent, from which post-nasal
~< post-obstruent can be derived by transitivity.



Begus & Nazarov

These trends are significant even if we include loanwords in the analysis. Data with loan-
words was fit to a model that initially had two independent variables: Position (treat-ment-
coded with same levels as above) and Place of articulation (sum-coded with velar as the
reference level). The significance of all main effects remains the same as in the native vo-
cabulary, but now the Position x Place interaction becomes significant. Loanword status
was not added to the model as a predictor.

If we isolate loanwords from the native vocabulary, we do not observe the unnatural
pattern at the same magnitude as in the native vocabulary. As will be shown below, however,
the unnatural voicing pattern does apply to some loanwords.

Another locus of gradient unnaturalness emerges in TQ if we look into the within-
context distribution of voicing in the post-obstruent position: clusters that agree in voicing
are gradiently dispreferred in TQ — clusters that disagree in voicing are significantly more
frequent.

We saw that labial and velar stops surface as voiced in non-nasal post-consonantal
position The following consonants are attested as triggering voicing: [t, {, t/g, k, s, |,
x, L1, J» w]. Note that the list includes voiceless fricatives, affricates and even voiceless
stops. Interestingly, in stop-stop clusters, the second member is almost never voiceless if it
is non-coronal. The table in [(5)| below presents examples of obstruent-initial clusters that
disagree in voicing, organized by first consonant (data from |Adelaar||1977).

&) Obstruent clusters in TQ (from|\Adelaar||1977

1%t member 2" member
Labial Velar
t lutbi mutgi
] / atfga
ts atsba mafsga
k takba /
S tfasbu féasgi
i ka/bi ifgi
X saxbi  manexax-gunas

Obstruent clusters that disagree in voicing are much more frequent than clusters that
agree in voicing if the second consonant is either a labial or a velar. The table in[(6) shows
the number of occurrences of obstruent clusters in which the second element is a labial or
a velar. To test the statistical significance of this distribution, the data was fit to a logistic
regression model with only voicing as the dependent variable (empty model). The main ef-
fect of Place of articulation was not significant. Second-element stops (labial and velar) are
significantly more frequently voiced (as opposed to voiceless) in clusters with a voiceless
first element in TQ native vocabulary (8 = 1.8, z = 5.6, p < 0.0001). This significance
remains if we add loanwords into the counts: the best fitting model includes the intercept
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and a main effect of loanword status (if it is justified cognitively). Voiced stops are more
frequent in obstruent clusters compared to voiceless stops (B =1.4z=52,p < 0.0001)E|

(6) Voice feature in obstruent clusters

TT TD DT DD
Count 11 68 0 0
Percent 139% 86.1% 0% 0%

TQ thus exhibits a statistically significant trend such that clusters that disagree in voicing
are preferred to clusters that agree in voicing. This trend is both gradient and unnatural.

The trend against agreeing obstruent clusters in TQ is unnatural in one additional re-
spect. The table in shows a preference for TD clusters, compared to DT clusters —
which goes against yet another phonetic tendency. Voicing is articulatorily easier to main-
tain in initial parts of closure than it is to onset voicing after a period of voiceless closure
(Ohala & Riordan| 1979, Ohalal [1997). The reason for this articulatory dispreference is
straightforward and has been identified as the Aerodynamic Voicing Constraint: airflow
and a subglottal-supraglottal pressure difference, necessary for voicing, are sufficient dur-
ing vowel articulation, but decrease into closure. The reason why voicing is articulatorily
difficult to initialize after a period of voiceless closure is that it is difficult to reinstantiate
sufficient airflow and transglottal pressure difference — once the closure has caused them
to decrease — without releasing the stop closure completely. In addition, there is a typo-
logical tendency towards respecting the Syllable Contact Law (Vennemann!|1988)), which
also prefers DT over TD clusters. Finally, decreasing phonation into closure is observed as
a passive tendency in several languages (see, for instance, Mobius|2004, Davidson|2016).
In other words, vocal fold vibration has language-independent grounds to decrease rather
than to increase during a period of closure. The restriction in TQ against DT (decreasing
in voicing) clusters in favor of TD clusters (increasing in voicing) thus also contradicts a
universal phonetic tendency against voicing into closure.

2.2 Phonetics

The phonological facts described above clearly indicate unnatural tendencies in the lexicon.
However, it is not a priori obvious that the phonological transcription used for these facts
was faithful to the acoustics. In the following, we present the results of a phonetic analysis
of Tarma Quechua. No previous detailed phonetic analyses of the system of voicing in TQ
exist: Adelaar| (1977) and |[Puente Baldoceda|(1977) are based on qualitative descriptions of
recordings and are not supported by phonetic analyses. Our analysis confirms the phonetic
reality of the TQ voice system as described above, making the case for true unnaturalness
in the TQ data.

3This difference ceases to be significant if we add loanword status as predictor (sum-coded), but that
might be due to the very small number of loanwords with clusters.
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The analyzed recordings were obtained onlineﬁ in .wav format, sampled at 90 kHzE|
with 16-bit quantization and analyzed with Willem Adelaar’s permission in the Praat soft-
ware (Boersma & Weenink!2016). The recordings were made by Willem Adelaar in 1970
in Tarma, in the Junin province of Peru. The informant was a 35 year old male speaker of
TQ. The recordings are noisy with considerable echo, but the analysis nevertheless reveals
important aspects of the unnatural gradient phonotactics and of the phonetic system of TQ
in general.

The figure in [(7)] shows four waveforms and spectrograms of two TD clusters: [tb] and
[kb]. All four spectrograms clearly show that the initial stop of the cluster is voiceless
with almost no phonation into closure and that phonation does not start until the onset of
the second stop’s closure. First-element stops in the clusters show some echo noise during
closure, because the recordings were made in a non-isolated room, but the voicing bar of
the second stop is clearly distinguishable from noise vibrations of the first stop in all four
cases.

@) Waveforms and spectrograms of four TD clusters: [atbi], [athi], [akba], and [ukba]
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The exact realization of voiced stops in clusters is not completely uniform and may vary.
The exact distribution is difficult to establish with limited data, but a short transitional
vocalic element is occasionally found between the voiceless and voiced obstruent, indicat-
ing a smaller degree of gestural overlap (Figure in [(8)). Occasionally, the voiced element
surfaces as a fricativeﬁ

4 Accesible online at: https://corpus1.mpi.nl/ds/asv/?0&0%5C&openpath=node: 1483874
>The original sampling frequency is not known.
In some cases, deleted or devoiced variants are observed instead.
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(8) Waveforms and spectrograms of voiced labial stops in post-consonantal position
with a short vocalic element between the voiceless and voiced element: [xb] (left)

and [[b] (right)

Frequency (Hz)
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326.1

Time (s)

After nasals, on the other hand, voiceless stops are the preferred variant, as detailed in @
The figure in[(9) shows spectrograms with voiceless [p] and [k] after nasals. Also note that
voiceless stops in TQ are unaspirated, which means that the phonotactic restriction in fact
targets the feature [£voice] rather than the feature [+spread glottis].

9) Waveforms and spectrograms of voiceless stops in post-nasal position: [mp] and
[1k] (right)
g ,. g 5000 ?" |”

o
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2.3 Productivity

The unnaturalness of the gradient phonotactic restriction is phonetically confirmed by the
recordings. Corroborating its status as a phonotactic restriction, there exists evidence that
it is synchronically active in some morphophonological alternations. and
identify four suffixes with an initial voiced labial stop that feature morpho-
phonemic alternation: [-ba/-pa] ‘genitive’; [-bax/-pax] ‘purposive’; [-bita/-pita] ‘proceden-
tive’; [-bis/-pis] ‘even, too’.

The allomorph with voiced initial stops is selected after vowels and non-nasal conso-
nants, including voiceless obstruents; the allomorph with voiceless initial stop is selected

after nasals (Creider|1968)). The distribution is illustrated in [(TO)|

(10) a. Intervocalic
wawxi-gi-ba wayi—rﬂ
‘the house of your brother’

"These examples are in Quechua orthography, but the bolded consonants have identical IPA transcriptions.
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b.  Post-nasal
wayi-n-pa pasa-un
‘we’re going to walk by way of his house’

c.  Post-obstruent
tamya-ya-n nuqa-ntik-baq
‘it is raining now for us’ (Creider)|1968, 12—-13)

This process is productive for a subset of suffixes. Other suffixes do not enter the alter-
nation. For example, the highly frequent plural suffix /-guna/ and other suffixes /-bura/,
/-gama/, and /-gasga/ have no voiceless allomorphs in post-nasal position (Adelaar||1977,
59). The productivity of this morphophonemic alternation also differs across local dialects.
Adelaar (1977) reports that voiceless allomorphs are required in Vicora Congas, whereas
in Huanuquillo the rate of application varies, i.e. is gradient. Even if this alternation is mor-
phologically governed, the constraints that motivate the alternation (no voiced stops after a
nasal, cf. Coetzee & Pretorius|2010, or no voiceless stop after a voiceless obstruent) are a
part of the unnatural phonotactic restriction on the lexicon.

In addition, the behavior of loanwords provides further evidence for the productivity
of unnatural gradient phonotactics. Most Spanish loanwords retain their original voicing.
Sporadically, however, voicing or devoicing does occur (data from Adelaar|1977).

(11) Sp. cuculi > [kuguli:] ‘white-winged dove’

. cotpe > [kutbi] ‘an animal from the mountains’
Sp. sauco > [sawgu] ‘magic tree’

Sp. vaca > [wa:ga] ‘cow’

o op
%
s

In two loanwords, a Spanish voiced intervocalic stop devoices to a TQ voiceless stop (data
from |Adelaar [1977): Spanish taruga > [taruka] ‘deer’ and Spanish dios se lo pague >
[jusulpaki] ‘thank you’.

The two loanwords with devoicing of intervocalic stop are especially relevant for the
discussion on the productivity of TQ unnatural gradient phonotactic restriction. The voice-
less [k] in TQ [taruka] from Sp. taruga cannot be a result of early borrowing, supposedly
before TQ voicing emerged. The historical development of TQ involves only voicing of
voiceless stops, not devoicing of voiced stops. Regardless of when Spanish taruga was
borrowed, sound change could not have produced TQ [taruka]. This means that the gra-
dient phonotactic restriction was likely productive and resulted from the law of frequency
effect: because voiced stops surfaced in approximately half of the lexicon, nativization that
matches native vocabulary frequencies is predicted to occasionally voice voiceless stops of
the donor language and devoice voiced onesﬂ

The unnatural phonotactic restriction presented in this paragraph is reported not only
for TQ, but also for one other Quechuan dialect. A very similar voicing process whereby
Proto-Quechua *p and *k voice in the same positions as in TQ is reported in the dialect

8 Assuming of course that these loanwords were not borrowed to TQ via some other Quechuan dialect
without the peculiar voicing process after the voicing was completed in TQ.
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of Paccho (Adelaar & Muysken 2004, Adelaar, p.c.). The two dialects, Tarma and Paccho
Quechua, are spoken in regions quite distant from each other and are potentially unrelated.
Adelaar (p.c.) mentions that the two dialects might have been in contact historically, but
the details are unclear. Because there are no descriptions or recordings of Paccho Quechua
available, we leave this dialect out of our discussion.

3. Implications for theories of synchronic phonology

Deriving non-categorical processes poses a challenge for OT with categorically ranked
constraints (although see|Anttila 1997, 2002, 2007, Nagy & Reynolds| 1997, |Coetzee[2004,
2006/| for models of variation with categorically (un)ranked constraints). On the other hand,
the Harmonic Grammar (HG) family of grammar frameworks (Legendre et al.|2006, Coet-
zee & Pater|2008, 2011, [Pater| 2008, [2009, Albright 2009, |Potts et al. 2010)) has numerically
weighted constraints and numerically defined well-formedness, which makes it well-suited
for gradient processes (Pater 20()9)@ For our purposes, Maximum Entropy models (Gold-
water & Johnson|2003) |[Hayes & Wilson 2008) are also a part of the HG family, since they
also have weighted constraints and numerical well-formedness. We will focus here on this
latter variant, since it defines a probability distribution over output candidates directly from
the weights and violations of constraints, but the results presented here can be extended to
other forms of HG.

The HG family has an advantage over categorical OT in that it can derive gradient pro-
cesses (Pater2009), which brings it closer to being able to account for unnatural gradient
phonotactics. One problem, however, remains even under the HG approach: the deriva-
tion of unnatural processes. We will show that HG with restricted CON requires that, in
any given context where CON defines a natural and an unnatural feature value, the natural
value will have a probability that is at least as high as that of the unnatural value.

The classic version of OT (Prince & Smolensky||1993/2004)) restricts its universal con-
straint inventory CON with the assumption that only a subset of possible constraints is
universal and thus encodes typological asymmetries in the grammar. In HG, typological
asymmetries that have to do with categorical patterns have also been tackled by restrict-
ing CON (see, e.g., Jesney|2016). There is, however, an additional aspect of the predictive
power of HG under the restricted CON hypothesis that has gone largely unnoticed in the
literature. If we restrict CON to only natural constraints, HG will predict that natural el-
ements in a given environment will always be more frequent than unnatural ones (Begus
2016).

We will illustrate this latter effect, which we call the “Natural Gradience Bias”, on the
basis of final (de)voicing (see Blevins 2004, Kiparsky 2006). In our illustration, we will
work with phonotactic probabilities of surface forms (see [Hayes & Wilson|2008). How-
ever, since we want to incorporate the effect of Faithfulness, and Hayes & Wilson| (2008)

9Stochastic OT [Boersmal (2016) and Jarosz’s [2015| framework also have numerically defined constraint
rankings and define probability distributions over outputs for an input. The implications of our work for these
frameworks should be similar. However, because these frameworks depend on variable categorical constraint
ranking, the degree to which the results presented in this section carry over to these frameworks needs to be
verified in future work.
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do not allow for Faithfulness constraints, we will use Jarosz’s 2006/ method of marginaliz-
ing over inputs to arrive at phonotactic probabilities. |Goldwater & Johnson| (2003)) define
probabilities of input-output mappings — P(output|input) —, which, given a prior proba-
bility over inputs and Bayes’ Rule, can be transformed into joint probabilities of outputs
and inputs — P(output, input). We will assume that all inputs have a uniform prior proba-
bility, as Jarosz| (2006) does for phonotactic learningm Further following Jarosz’s (2006))
approach, we can derive the phonotactic probability P(output) for every possible surface
form by marginalizing over inputs.

In a categorical OT grammar with a restricted version of CON, the faithfulness con-
straints IDENT-1O(voi) and the natural, final devoicing-promoting markedness constraint
*D# are admitted in the inventory, but crucially, unnatural *T# is excluded (cf. |[Kiparsky
2006). Under these assumptions, there cannot be a phonotactic restriction against voiceless
obstruents word-finally: IDENT-1O(voi) > *D# implies faithful retention of word-final
voiced obstruents, and *D# > IDENT-10(voi) implies that all word-final obstruents are
made voiceless. When we switch to HG, we have an infinite number of weightings for
these two constraints, but Jarosz’s (2006) approach allows us to demonstrate that a gradi-
ent phonotactic restriction against voiceless obstruents word-finally is impossible with just
these two constraints.

Given the assumption of uniform input probabilities, limiting our universe to [£voice]
at the end of a word means that the inputs /T#/ and /D#/ have 0.5 probability: P(/T#/)
= P(/D#/) = 0.5. A restricted CON and weighted constraints combined yield the following
implications: if the faithfulness constraint (.% ) IDENT-IO(voi) has a positive infinite weight
and the markedness constraint (.#) *D# has a finite weight, the phonotactic probabilities
of [T#] and [D#] (P([T#] and P([D#]) are both 0.5. If, however, the markedness constraint is
weighted finitely lower than, or even higher than the faithfulness constraint, the phonotactic
probability of [T#] will be greater than that of [D#] (Begus|[2016). Thus, a system that
gradiently (or categorically) prefers [T#] over [D#] is impossible.

(12)  a.  w(IDENT-IO(voi)) — w(*T#) = co: P([T#]) = P(ID#]) = 0.5
b.  w(IDENT-IO(voi)) — w(*T#) < co: P([T#]) > P([D#])

The same reasoning can be used for any other natural-unnatural constraint pair, which
illustrates the more general point that, if we allow only natural constraints into CON, we can
only derive systems with gradient phonotactic distributions in which the natural element in
a given context is more frequent than the unnatural element. In other words, with restricted
CoN, no weighting exists that would yield a system in which the unnatural feature value
has a greater posterior probability than the natural one in a given context.

(13) a. w(%)—w(A) = oo: P(nat) = P(unnat) = 0.5
b. w(F)—w(A) < eo: P(nat) > P(unnat)

10This assumption can also be seen as a Bayesian interpretation of Richness of the Base (Smolensky|1996):
we do not want to encode phonotactic information in the lexicon, so we should have an equal belief in the
possibility of each underlying form. Note that the various inputs’ probability of occurrence in a language
might not be uniform, but we abstract away from frequentist probabilities in this discussion.
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From |(13)] it follows that restricted CON allows either no phonotactic preference, or a
phonotactic restriction against unnatural elements in favor of natural elements in a given
environment: a Natural Gradience Bias.

(14) Natural Gradience Bias (NGB)
HG with restricted CON predicts that the probability of the natural feature value in
a given environment is always equal or greater than the probability of the unnatural
value in a given environment.

This generalization correctly predicts the major typological trend with regard to gra-
dient phonotactic restrictions: all previously reported cases (both as trends in the lexicon,
e.g., Berkley| 2000, |Pater; 2008, Anttila[2008| and as tacit phonotactic knowledge obtained
from experiments, e.g. |Albright 2009) indeed operate in the natural direction, where the
natural element is preferred and more frequent than the unnatural one in a given environ-
ment. Moreover, our NGB assumption receives support from the modeling literature: Hayes
(2017) has recently argued that in MaxEnt with restricted CON “[a] harmonically bounded
candidate can never receive a higher probability than the candidate that bounds it”

However, the Tarma Quechua system of stop voicing presented in this paper suggest
that HG with restricted CON undergenerates, since it requires precisely the situation ex-
cluded by the Natural Gradience Bias: a higher frequency for the unnatural feature value
in a certain context. Even with the flexibility of weighting allowed by HG, no weighting
of natural Markedness constraints can generate cases like Tarma Quechua. This, in turn,
suggests that CON must contain some unnatural Markedness constraints.

To simply relax CON and allow all possible Markedness constraints, however, is not a
desirable solution either. Hayes and Wilson’s (2008) phonotactic learner is able to derive
unnatural phonotactics because they do not limit CON to natural constraints — the learner
is only provided with feature values and constraint templates. Their model, however, does
not encode the typological rarity of unnatural processes (although, see Pater & Moreton
2012, |Staubs|[2014, and Begus|[2017, 2018b on how typological rarity might be derived
with unrestricted CON). Ideally, the grammar would be able to derive unnatural patterns
and encode their rarity at the same time (for proposals, see Begus| (2018a)).

Before firm conclusions are drawn, the unnatural gradient phonotactic restrictions in
the two languages would need to be confirmed with behavioral experiments.

Unnatural categorical alternations have already been confirmed as being productive
elsewhere: Coetzee & Pretorius| (2010) show that post-nasal devoicing in Tswana extends
to nonce-words. Experimental nonce-word tests in Tarma Quechua would reveal the degree
of productivity and grammatical status of the two processes and therefore the ability of
unnatural gradient phonotactic restrictions to be productive in general.

"Hayes|(2016) calls this generalization “stochastic harmonic bounding”.
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